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Nederlandse samenvatting 
-Summary in Dutch— 

Bij veel problemen uit de (ingenieurs-) wetenschappen is het moeilijk of zelfs onmo-
gelijk om fysische experimenten rechtstreeks uit te voeren. In plaats daarvan worden 
complexe simulatieprogramina's gebruikt om virtuele experimenten uit te voeren op 
krachtige computers of clusters. Hoewel dat wetenschappers en ingenieurs meer fiex-
ibiliteit biedt om designproblemen en -fenomenen te bestuderen onder gecontroleerde 
omstandigheden, vereisen computersimulaties een aanzienlijke investering in tijd en 
rekenkracht. De duur van een enkele simulatie kan varieren van enkele minuten of 
uren tot enkele dagen of zelfs weken. Bijgevolg worden gangbare technieken zoals 
optimalisatie, sensitiviteitsanalyse, en ontwerpruimte-exploratie al snel zeer moeilijk 
tot onmogelijk. 

Om hier mee om te gaan doen onderzoekers beroep op verschillende approximate 
methoden die het gedrag van de simulatiecode zo goed mogelijk benaderen maar tegeli-
jkertijd veel goedkoper zijn om te evalueren. Deze thesis concentreert zich op datage-
baseerde, globale surrogaatmodellen als approximatiemethode. Het doel van globale 
surrogaatmodellering is om een globaal approximatiemodel te construeren dat, zo ac-
curaat mogelijk is, met zo weinig mogelijk simulaties, en op een zo efficient mogelijke 
manier. Eens geconstrueerd, kan een dergelijk surrogaatmodel hergebruikt worden in 
de verdere stappen van het design proces of ge'integreerd worden in software pakketten. 
De besproken problematiek doet zich voor in een breed scala van domeinen, gaande 
van aerodynamica tot hydrologie. 

Echter, de constructie van zulke globale surrogaatmodellen vereist de resolutie van 
een heel aantal problemen en keuzes. Deze omvatten bijvoorbeeld de keuze van model 
type, modelselectiecriteria, model parameter optimalizatie algoritme, etc.. In de prak-
tijk blijkt dat een designer deze keuzes op een vrij pragmatische en ad hoc manier 
maakt en dat er weinig gei'ntegreerde tools zijn om op een systematische en adap-
tieve manier surrogaatmodellen te construeren. Er is ruimte voor een meer flexibele, 
uitbreidbare, en adaptieve benadering voor het modeleringsprobleem dat geen harde 
veronderstellingen vereist (maar ze ook niet negeert) over de karakteristieken van het 
probleenidomein of modeleringsaanpak. Tezelfdcrtijd moet men rekening houden met 
het feit dat het primair doel van een domeinexpert ligt in het oplossen van zijn design-
probleem. Een accuraat, globaal surrogaatmodel is hierbij belangrijk maar geen doel 
op zich. De tijd en leercurve die een domeinexpert hierin moet investeren moet dan 
ook geminimaliseerd worden. 

Deze observatie vormt het uitgangspunt van deze thesis. De thesis onderzoekt hoe 
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de adoptiedrempel van geavanceerde surrogaatmodeleringstechnieken kan verkleind 
worden zodat deze gemakkelijker gebruikt kunnen worden door domein experts om 
hun designresultaten te verbeteren en tijdswinst te creeren. Het domein van deze 
thesis bevindt zich in de doorsnede van machine learning/AI, gedistribueerde syste-
men, computersimulatie, en software engineering. Centraal staat het ontwerp en de 
implementatie van een software platform dat verschillende surrogaatmodeleringstech
nieken integreert in een fiexibele implementatie met enkele extra uitbreidingen. Dit 
software platform zal nuttig blijken in elk domein waar een goedkoop, accuraat, ap-
proximatiemodel nodig is voor een dure simulator of andere databron. 
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English summary 

For many problems from science, and engineering it is impractical to perform exper
iments on the physical world directly. Instead, complex, physics-based simulation 
codes are used to run experiments on computer hardware. While allowing scientists 
more flexibility to study phenomena under controlled conditions, computer experi
ments require a substantial investment of computation time. One model evaluation 
may take many minutes, hours, days or even weeks. This is especially problematic for 
routine tasks such as optimization, sensitivity analysis and design space exploration. 

As a result researchers have turned to various approximation methods that mimic 
the behavior of the simulation model as closely as possible while being computation
ally cheap(er) to evaluate. This work concentrates on the use of data-driven, global 
approximations using compact surrogate models. The goal of global surrogate model
ing is the generation of a surrogate that is as accurate as possible, using as few sim
ulation evaluations as possible, and with as little overhead as possible. Once such a 
simpler approximation is available, it can be reused further down the engineering de
sign pipeline. This type of problem and use case is encountered in a very large range 
of scientific disciplines and fields, ranging from mechanical engineering to hydrology. 

However, there are an overwhelming number of options available to the designer: 
different model types, different experimental designs, different model selection crite
ria, different hyperparameter optimization strategies, etc. However, in practice it turns 
out that the designer rarely tries out more than one subset of options and that readily 
available algorithms and tools to tackle this problem are scarce and limited (particu
larly in industry). There is room for an extensible, flexible, and automated approach 
to surrogate modeling, that does not mandate assumptions (but does not preclude them 
either) about the problem, model type, sampling algorithm, etc. At the same time, 
the primary concern of a domain expert scientist is obtaining an accurate replacement 
metamodel for their problem as fast as possible and with minimal user interaction. The 
surrogate modeling specifics are of lesser or no interest to them. 

This thesis starts form this observation and investigates how the barrier of entry 
for a domain expert can be reduced when it comes to applying state-of-the-art surro
gate modeling techniques to his/her application domain. This involves working in the 
intersection of machine learning/AI, distributed systems, modeling & simulation, and 
software engineering. Core in this dissertation is the design and implementation of a 
software platform that brings together many surrogate modeling methods in a flexible 
implementation with a number of custom extensions and added integration. The frame
work will be useful in any domain where a cheap, accurate approximation is needed for 
an expensive reference model and help bridge the gap between theory and application. 



www.manaraa.com

Abbreviations 

ADS : Advanced Design System 
AIC : Aikaike Information Criterion 
ANN : Artificial Neural Network 
BEEQ : Bayesian Error Estimation Quotient 
BIC : Bayesian Information Criterion 
CGA : Cannonical Genetic Algorithm 
CS : Classifier Systems 
DGA : Distributed Genetic Algorithm 
DIRECT : Dividing RECTangles 
DM : Difference Mapping 
EA : Evolutionary Algorithm 
EGO : Efficient Global Optimization 
El : Expected Improvement 
EM : Electro-Magnetics 
EP : Extinction Prevention 
GA : Genetic Algorithm 
GIS : Geographic Information System 
GP : Genetic Programming / Gaussian Process 
IM : Input Mapping 
KBNN : Knowledge Based Neural Networks 
LHS : Latin Hypercube Sampling 
LNA : Low Noise Amplifier 
LOLA : Local Linear Approximation 
LRM : Linear Reference Model 
LS-SVM : Least Squares Support Vector Machine 
LTI : Linear Time Invariant 
LWR : Locally Weighted Regression 
MAO : Metamodel Assisted Optimization 
MC : Monte Carlo 
MCMC : Multi Chain Monte Carlo 
MOR : Model Order Reduction 
MOSBO : Multi-Objective Surrogate Based Optimization 



www.manaraa.com

2 CHAPTER 0 

MPI : Message Passing Interface 
MPS : Mode Persuing Sampling 
MSE : Mean Squared Error 
NIC: Network Information Criterion 
OM : Output Mapping 
PDF : Probability Distribution Function 
PGA : Parallel Genetic Algorithm 
PK1 : Prior Knowledge Input 
PMOR : Parameterized Model Order Reduction 
POD : Proper Orthogonal Decomposition 
PSE : Problem Solving Environment 
PSO : Particle Swarm Optimization 
RBF : Radial Basis Function 
RBFNN : Radial Basis Function Neural Network 
ROM : Reduced Order Modeling 
RSM : Response Surface Methodology 
SBO : Surrogate Based Optimization 
SGE : Sun Grid Engine 
SM : Space Mapping 
SOA : Service Oriented Architecture 
SQM : Sample Queue Manager 
SQP : Sequential Quadratic Programming 
SUMO : Surrogate Modeling 
SVM : Support Vector Machine 
VC : Vapnik-Chervonenkis 
VF : Vector Fitting 
XML : Extensible Markup Language 



www.manaraa.com

Preamble 

All of science can be divided into physics and stamp-collecting. 

— Lord Kelvin 

The first words are always hardest to write down and be content with. An easy way 
out is to start from a quote, preferably from somebody of high stature or fame. In 
that spirit, this introductory preamble reminds me of something a well known Aikido 
instructor once said: the success of technique is not determined by performing the 
movement itself but by the way you enter into it and leave from it. It is all too easy 
to get caught up in the movement itself and forget that what really counts is the con
trol, posture, awareness, discipline, and confidence you show on entering and leaving. 
Consequently, these are the hardest to master. 

Writing papers or a thesis is in many ways similar. The technical side of things 
writes itself, but the text leading up to and winding down from the technical discussion 
is much trickier given the need for continuity, coherence, and at least some form of 
eloquence and parsimony. Inspired (and humbled) by such lucid writers as Richard 
Dawkins, this preamble is one such attempt. The topic of this thesis is firmly rooted 
in computer science but influenced by the wide range of scientific fields that have held 
my interest over the years. I admit to having regarded scientists in other fields with 
some envy. They were out in expensive labs or adventurous expeditions uncovering 
the real unknowns of this world. While we computer scientists sit under fluorescent 
lighting, locked to a fully deterministic and predictable machine, and faced with a 
somewhat odd gender ratio. However, the truth is that many (if not most) of recent 
scientific breakthroughs in physics, biology, medicine, and other fields would not have 
happened without the algorithmic and architecture work of computer scientists like 
Babbage, Turing, Amdahl, Berners-Lee, and many others. The dichotomy is not as 
strict as 1 present it here (the work by Goedel comes to mind). But this can conve
niently be ignored for now. Moreover, while the computer scientist may be locked to 
his reverberating machine, at the same time he enjoys unlimited freedom. His work 
and creations limited only by human creativity and ingenuity and not by the price 
of daedalean looking equipment, expensive expeditions, or the need for a library or 
archive. Furthermore, while it was the eminent Lord Kelvin who said All of science 
can be divided into physics and stamp-collecting. It was also Lord Kelvin who said / 
have not the smallest molecule of faith in aerial navigation other than ballooning or of 
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expectation of good results from any of the trials we hear of. 
While computer science itself is a very young field, its roots go further back than 

one might think at first. The word algorithm derives from Al-Khwarizmi, a Persian 
mathematician who wrote a book around the year 825, On the Calculation with Hindu 
Numerals, that was principally responsible for the diffusion of the Indian system of 
numeration in the Middle East and then Europe. This book was translated into Latin 
around the 12th century: Algoritmi de numero Indorum, and marked the start of the 
concept algorithm as we know it today. It took until 1 642 for this work to materi
alize in a tangible, working machine. It is that year that the first mechanical adding 
machine (the Pascaline) was developed by the famous French mathematician Blaise 
Pascal. This was followed by the first 4-function calculator which saw the light around 
Darwin's time in 1893. The real revolution started in 1943 when Alan Turing and oth
ers Completed Colossus (the first all electronic calculating device), followed by the 
discovery of the transistor at Bell Labs 4 years later. The rest, such as the formulation 
of Moore's Law in 1965, is as they say, history. 

The result of this long history and the increasing pace and scale of scientific re
search is that the days of such Homo Universali as Da Vinci, Al-Khwarizmi, Zhan 
Heng, and Goethe are no more. This quickly becomes obvious as one starts delving 
into the topic of ones own research. One soon realizes that Aristotle had it right when 
he said that "the more you know, the more you know you don't know". There are so 
many fields and sub-fields, and sub-sub-fields, that one sees no other choice but to 
take refuge in that safe, but infamous, ivory tower. The work presented in this thesis 
is no exception, covering only a very narrow segment of that feat known as scientific 
research. But luckily the topic was such that it allowed the opening of a window here 
or there. Even if just for a peek. 
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Introduction 

Begin at the beginning and go on until you come to the end; then stop. 

— Said by the king to the white rabbit in Alice in Wonderland 

A thousand years ago science revolved around the description of natural phenomena. 
Slowly evolving from more esoteric and religious explanations to more scientific ex
planations involving fundamental concepts such as prediction and replication. The 
last few hundred years work concentrated on the theoretical fundamentals of science. 
Marked by astonishing genius and meticulous experimentation, many of the corner 
stones of modern science and its methods date from this time (Bacon, Galilei, Newton, 
Maxwell, Planck, etc.). The last few decades science has moved more and more into 
the computational domain, with technological advances vastly increasing the realm 
and complexity of problems and phenomena that can be studied. This has led to an 
explosion of data and tools that are at present being unified into, what is often referred 
to as, e-Science [1]: the unification of theory, experiment, simulation, and knowledge 
management. Against this backdrop we can define the problem domain and scope of 
this dissertation. 

1.1 Problem domain and scope 

An illustration of the context of this work is given in figure 1.1. A detailed overview 
of the problem domain in this thesis will be given in chapter 2. In this section a global 
overview suffices 



www.manaraa.com

1-2 C H A P T E R 1 

Design 
variables 

Simulation Model 

Adaptive sampling 

, Fluent* HSPICE* CST 
widtn temperature Corneal* Abaqus^ 
angle frequency w 

- V 

Response 
variables 

lift S-parameters 
pressure stress 

Adaptive Modeling 

Configurable infrastructure 

-*»»» r 

CL 

Design 
variables 

V 
Response 
variables 

Distributed Computing 

fc< A * 
—^-

Surrogate Model / Metamodel 

Neural network Knoing SVM rational function spline 

Bbi-t.'&i^.-iiwWiiV-a J ^ t - i ^ >Vfe&ij« 

•SWGC© http /̂ www sumo Intec uoent be 

Figure 1.1: Thesis problem domain 

1.1.1 Background 

Every scientific and engineering field is confronted with physical phenomena that re
quire explanation or reproduction. In this respect computer simulation has been a major 
vehicle for searching and testing satisfactory theories and solutions. Namely, for many 
problems it is impractical to perform experiments on the physical world directly (e.g., 
airfoil design, earthquake propagation). Instead, complex, physics-based simulation 
codes are used to run experiments on computer hardware. 

However, while allowing scientists more flexibility to study phenomena under con
trolled conditions, computer experiments require a substantial investment of compu
tation time. Engineers are confronted with large design spaces and many variables 
whose relationship needs to be analyzed. Even if a single simulation takes only a 
few seconds, routine tasks such as optimization, sensitivity analysis, design space ex
ploration and visualization quickly become cumbersome and impractical. A classical 
illustrative quote is one by Wang and Shan [2]: 

...it is reported that it takes Ford Motor Company about 36-160 hrs to 
run one crash simulation [3], For a two-variable optimization problem, 
assuming on average 50 iterations are needed by optimization and assum
ing each iteration needs one crash simulation, the total computation time 
would be 75 days to 11 months, which is unacceptable in practice. 
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Moore 's law provides some solace but is not sufficient to offset the drive to finer 
timescales, higher resolution, and the known complexity of the algorithms that lie at 
the heart of simulation codes. 

This thesis is concerned with how this problem is often tackled in engineering de
sign: simpler approximation models are created to predict the system performance and 
develop a relationship between the system inputs and outputs. When properly con
structed, these approximation models mimic the behavior of the simulation code while 
being computationally cheap(er) to evaluate. Different approximation methods exist, 
each with their relative merits. This work concentrates on the use of data-driven, global 
approximations using compact surrogate models (also known as emulators, metamod-
els, replacement models, or response surface models) . The word global is crucial here. 
We are interested in capturing the global behavior of the system in an accurate, effi
cient model. Not in ' s imply ' optimizing it. In contrast, "...in design optimization one 
is not concerned with the accuracy of any intermediate predictions, but only with the 
ability to ultimately reach good quality designs." [4]. Once such a global approxima
tion is available it is of great use for gaining insight into the behavior of the underlying 
system. The model may be easily queried, optimized, visualized, and seamlessly inte
grated into CAD/CAE software packages. 

1.1.2 Scope 

The operating context of this thesis is thus the problem of generating an accurate data-
based global model for an expensive reference model at a minimum computational 
cost. Thus this thesis will not focus on the reference model itself (what sub-systems it 
contains, how it is validated, etc.) or how metamodels for different sub-systems may 
be integrated and used. Or put otherwise, in the terminology of Meckesheimer [5], 
we only consider the metamodeling module and not the system integration or model 
formulation modules. 

Furthermore, since we cannot possibly provide a discussion for every possible sys
tem we must restrict ourselves to a particular class of computer simulation codes. We 
make the following three fundamental assumptions: 

1. We only consider static input-output systems where the output of the simulator 
at time t depends only on the input at time t. Of course the implementation of 
the simulator may itself include dynamics and time based behavior. However, 
we assume that such dynamics are internal to the system, and that the external 
behavior can be represented by a multivariate function / ' : M.cf i—> C1. Systems 
where this function is time dependent or involves prediction of future states (time 
series prediction) are not considered. 

2. Data is generated from computer simulations and is thus deterministic and (quasi) 
noise free. Some numerical or discretization noise may be present but the results 
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themselves are deterministic (versus stochastic simulation). This means that the 
statistical theory built up for the analysis of physical experiments does not ap
ply. Or, as Sacks et. al. [6] put it "the classical notions of experimental blocking, 
replication and randomization are irrelevant" l. 

3. Data is expensive to generate thus the number of simulations must be kept to a 
bare minimum. At the same time little or nothing is known up-front about the 
true behavior of the system. 

Mentioning these assumptions during conference presentations usually results in one 
of two possible questions or critiques (depending on the audience). A first critique is 
that these three assumptions limit the space of possible applications to such a degree 
that they exclude any interesting problems. The scope is thus too narrow. The other 
critique is that these assumptions are very vague and the problem statement still too 
general and ambitious. The scope is thus too broad. 

In each case counterexamples can be given and this thesis describes many appli
cations that are both interesting and specific enough to tackle and learn from. An 
excellent motivation and review is given in [9]. The wide range of researchers that 
have downloaded and made use of the software that resulted from this thesis testifies 
to this as well. 

1.2 Research Challenge 

1.2.1 Main challenge 

The core challenge of this thesis is illustrated in figure 1.2 and is concerned with how to 
efficiently generate an accurate global surrogate model of a computationally expensive 
simulation code within the requirements specified by the domain expert or engineer. 
This task is subject to three constraints, namely that the computational cost and over
head should be minimized, while the surrogate model accuracy should be maximized. 
Solving this problem involves two main sub-challenges: (1) the generality-specificity 
trade-off and (2) the accessibility challenge. 

1.2.2 Sub-challenge I: generality versus specificity 

In its purest form, surrogate modeling treats the computationally expensive simulation 
code as a data generating black-box, only taking into account its input-output behavior. 
Thus surrogate modeling is sometimes referred to as behavioral modeling. The advan
tage of this is that, since no explicit domain specific dependencies are introduced, it 
becomes possible to leverage the extensive set of techniques and algorithms that have 

1 As an aside, even if the simulation model is deterministic, its parameter values may still be uncertain so 
risk or uncertainty analysis is needed and the classical notions become relevant again [7,8]. However, this 
falls outside the scope of this thesis. 
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Figure 1.2: Surrogate modeling research challenge 

already been developed for regression, approximation, and interpolation. In addition, 
any new algorithms or tools that are developed have the advantage of being readily 
portable across different problems and fields. 

However, a first problem with this is that there is a very large set of design choices 
that must be overcome in order to solve the surrogate model generation problem: how 
must data be collected (design of experiments, adaptive sampling), how should sim
ulations be run (scheduling, distributed computing), what model type and complexity 
should be used (model selection, hyperparameter optimization), what input variables 
are most important (feature selection), etc. If little is known about the true response 
behavior (as stated in section 1.1.2), making informed decisions as to which algorithms 
should be used is far from trivial given the wide range of options. 

A second, more fundamental problem can be found in the well-known aphorism 
coined by Geffray Mynshul in 1612: "A jack of all trades is a master of none"2. What 
you gain in portability and generality, you loose in accuracy and performance for a 
particular problem. This is the fundamental generality-specificity trade-off which lies 
at the heart of every machine learning problem and must be tackled somehow. 

1.2.3 Sub-challenge I I : accessibility 

To add to the difficulty, there is a complex dependency web between the different op
tions and sub-problems that make up the surrogate modeling process. Dealing with 
these dependencies and assumptions is non-trivial, particularly for a domain expert for 
whom the surrogate model is just an intermediate step towards solving a larger, more 
important problem. Few domain experts will be experts in the intricacies of efficient 
sampling and modeling strategies. Their primary concern is obtaining an accurate re-

2 Actually the full version is quoted as "Jack of all trades, master of none, though ofttimes better than 
master of one". Food for thought. 
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placement metamodel for their problem as fast as possible and with minimal overhead. 
Model (type) selection, model parameter optimization, sampling strategy, etc. are of 
lesser or no interest to them. 

What usually happens in practice is that choices are made in a rather ad hoc man
ner, driven by (understandably) pragmatic decisions based on the availability of off-
the-shelf software, existing experience and common practice within the relevant field, 
available time and computing resources, etc. [4]. The result is that many (potentially 
superior) methods go untried with unnecessary waste of computing resources as a re
sult. In addition, the methods that are applied, often are done so in a one-shot, or trial 
and error based approach [9]. The work flow typically reduces to: 

1. assess available computing resources 

2. perform simulations until the computing budget is exhausted 

3. manually fit one ore more models on the collected data 

4. perform some statistical analysis to select a suitable model 

A way to improve this one-shot, manual usage of surrogate modeling methods while 
keeping the modeling process tractable and minimizing the barrier of entry for the 
domain expert marks the second sub-challenge of this thesis. 

1.3 Thesis goal and contributions 

A huge amount of comparative studies have already been conducted that try to extract 
general rules and guidelines with regard to modeling and sampling strategy choices in 
order to come to an improved work flow [2, 3, 10—21]. However, such studies have 
very limited generalization power and should always be interpreted carefully (chapter 
7 will elaborate on this topic). Domain experts can benefit more from a more holistic, 
adaptive, and generative approach to surrogate modeling. Given that data is expensive 
and its use must be optimized, a close integration of sampling, modeling and sample 
evaluation strategies is paramount. A good discussion of these aspects is given in [5,9] 
and ideas in this direction have been explored in [22—25]. 

The motivation for a more adaptive, sequential approach to the surrogate modeling 
problem also comes from the underlying design process itself. To paraphrase [9]: 

During the design processes, the design information increases exponen
tially along the design time line. At different points along the design time 
line the design requirements and designer knowledge' change. At the be
ginning period the design efficiency is much emphasized while as design 
goes on more and more focus is put on the design effectiveness. A designer 
in the early stages of conceptual design knows little about the problem or 

h 
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the design space and does not necessarily know which type of DOE or 
which metamodeling methods will be most effective and efficient for that 
particular problem. As the design evolves and more information becomes 
available, it may be possible to determine which methods are appropriate 
for that particular problem. 

From the viewpoint of surrogate modeling, this shift of design requirements corre
sponds to the need for an adaptive metamodel strategy with sequential design of exper
iments. 

The goal and contribution of this thesis is to develop such a strategy that goes be
yond comparisons on individual sub-problems and aims for seamless, adaptive integra
tion. In addition, given the pace of development, and given the wide range of available 
techniques, there is a need to easily switch between different algorithms. Be it because 
the problem or domain expert requires it, or simply to facilitate benchmarking between 
methods. Furthermore, a problem facing domain experts is that advanced sampling or 
modeling techniques are described in literature but applying or benchmarking them is 
often difficult since no implementation is made available. Thus any conceptual frame
work linking the different sub-problems of surrogate modeling should be accompanied 
with a software implementation in order to ensure that algorithms can easily be tested, 
compared, and used by domain experts. 

Thus, in summary, the contribution of this thesis is a systematic, yet flexible frame
work that replaces the " ? " in figure 1.2, and that 

• minimizes the number of simulations in order to come to an accurate model 

• implements novel model management and sample selection strategics, providing 
automation where possible 

• can integrate with the wide range of modeling techniques already available and 
can be extended to incorporate new methods 

• links together the different steps of the modeling process (data collection, model 
construction, etc.) in a single robust algorithm 

• allows a domain expert to quickly apply, compare, and test different methods 
without requiring a steep learning or installation curve 

• easily integrates with other tools of the wider design and engineering pipeline 

Hence the subject and focus of this dissertation will be on the meta-level. No special 
attention will be given to any particular fitting technique or area of application. Rather 
the thesis will concentrate on the surrogate modeling process. 
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1.4 Thesis organization 

This dissertation consists of 11 chapters and two appendices. The first three chap
ters cover the motivation for this work and fix the canvas within which research took 
place. This involves an extensive discussion of the motivations and sub-problems of 
the surrogate modeling problem and how they all fit together. 

This is followed by chapter 4 which is an important chapter since it explains the 
design and implementation of the software frame-work that forms the core of the tests 
and algorithms discussed in this dissertation. This is then followed by a first real world 
case study in chapter 5. 

Chapters 6 to 9 build upon the preceding chapters by discussing various extensions 
and improvements to the classical surrogate modeling algorithms in the distributed, 
multi-objective, and model selection domains respectively. Chapter 10 then presents a 
number of illustrative applications, followed by the conclusion and pointers to future 
work in chapter 11. The thesis is completed by two appendices, one on the problem of 
generating efficient and accurate circuit models for transistors (appendix A), and one 
(more informative) appendix providing some background information on the SUMO 
Toolbox development infrastructure and process (appendix B). 

1.5 List of publications 
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crowave Devices 
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• Investigating the Integration of Gridcomputing and Metamodeling 
D. Gorissen, T. Dhaene, G. Deconinck, B. Dhoedt, 
UA Technical report TR-06-02, 
21 pages, January 2006. 

1.5.5 Abstracts - Posters 

• Two level refined direct method for electromagnetic optimization and in
verse problems 
G. Crevecoeur, A. Abdallh, I. Couckuyt, D. Gorissen, L. Depre, T. Dhaene 
Proceedings of Compumag 2009, Florianopolis, Brasil, 2009 (Poster) 

• A comparison of sequential design methods for RF circuit block modeling 
K. Crombecq, L. De Tommasi, D. Gorissen and T. Dhaene 
Proceedings of the 40th Conference on Winter Simulation, Miami, Florida, De
cember 2008. 
pp. 2942-2942 

• Surrogate Modeling of Low Noise Amplifiers based on Transistor Level 
Simulations 
L. De Tommasi, D. Gorissen, J. Croon and T. Dhaene 
Scientific Computing in Electrical Engineering (SCEE 2008),Sept. 28 - Oct. 3, 
Helsinki University of Technology, Finland 

• Optimization in surrogate model building for RF circuit blocks. 
L. De Tommasi, D. Gorissen, J. Croon and T. Dhaene 
The European Consortium For Mathematics In Industry (ECMI 2008), June 30 
- July 4, University College London, UK 

• Automatic Regression Modeling with Active Learning 
D. Gorissen, T.Dhaene, E. Laermans, 
Benelearn 2008, 19-20, Spa, Belgium 

• Automatic Surrogate Model Building for Computer Based Design 
D. Gorissen, T.Dhaene, P. Demeester, 
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5th European Conference on Computational Methods in Applied Sciences and 
Engineering (ECCOMAS 2008), Venice (Italy) 

• Adaptive Surrogate Modeling of Complex Systems 
T. Dhaene, D. Gorissen, W. Hendrickx, 
22nd European Conference on Operational Research (EURO XXII), Prague (Czech 
Republic), 
Book of abstracts, pp. 136, July 2007. 

• Integration of Grid Computing and Multivariate Macromodeling 
D. Gorissen, W Hendrickx, K. Crombecq, T. Dhaene, 
Workshop on Behavioral modeling and approximatiom, University of Antwerp, 
Belgium, 
21 August 2006. 

• Alternative Approaches to Grids and Metacomputing 
Tutorial, G. Stuer, D. Gorissen,P. Hellinckx, 
ICCS 2005, Emory University, Atlanta, 
May 2005. 

• H 2 0 Metacomputing - Jini Lookup and Discovery 
8th Jini Community Meeting, The Brewry, London, 
7-8 December 2004. 

1.6 Conclusion 

Due to the computational complexity of current simulation codes, the use of global sur
rogate modeling techniques (adaptive sampling, adaptive modeling) has become popu
lar among scientists and engineers alike. However, considerable problems and choices 
need to be overcome in order to apply surrogate modeling methods in an efficient and 
user friendly manner. The goal of this work is to go beyond the traditional one-shot (or 
even ad hoc) application of surrogate methods by integrating the many advanced solu
tions to the different sub problems of global surrogate modeling in a unified, pluggable, 
adaptive framework (both conceptually and literally, i.e., in software). This will go one 
step further than existing efforts in this area [5 ,9] . This framework will facilitate the 
transfer of surrogate modeling expertise to domain experts and will be useful in any 
domain where a cheap, accurate approximation is needed for an expensive reference 
model or data source. To achieve this, the thesis will build on insights from distributed 
systems, machine learning and multivariate statistics. 
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Surrogate Modeling 

On two occasions I have been asked,—"Pray, Mr. Babbage, if you put into 
the machine wrong figures, will the right answers come out? " . . . / am not 
able rightly to apprehend the kind of confusion of ideas that could provoke 
such a question. 
— Charles Babbage 

2.1 Introduction 

Having laid out the structure, scope, and motivation of this thesis in the previous chap
ter we now turn to surrogate modeling itself. However, this is still quite a broad field 
with many subtopics. Thus, the purpose of this chapter is to provide some historical 
and conceptual context with regard to modeling and the use of surrogate models in 
engineering design. This should clarify precisely which aspects of surrogate models 
arc of interest in this work. The chapter starts with some background and history on 
(computer) modeling, followed by the practical problems involved, and potential solu
tions through approximation. This brings us to the topic of surrogate modeling which 
is defined and illustrated with applications from different domains. 

2.2 Modeling 

Before we consider surrogate modeling, it is useful to first take a step back and consider 
the motivation for modeling in general. 
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2.2.1 Background and definition 
Since the dawn of civilization, humans have used abstractions of the real world in 
order to be able to reason about it and the phenomena that occur within it1. Actually, 
anthropologists think that the ability to build abstract models is the most important 
feature which gave homo sapiens a competitive edge over less developed human races 
like homo neandertalensis [27]. Or, to quote eminent computer scientist Tony Hoare, 
"In the development of the understanding of complex phenomena, the most powerful 
tool available to the human intellect is abstraction.". 

The very first 'models ' were numbers and the writing of numbers (e.g., as marks 
on bones) and date back to about 30,000BC. With the development of Astronomy and 
Architecture around 4,000BC, models slowly became more complex and became well 
used. It is well known that by 2,000 BC at least three cultures (Babylon, Egypt, India) 
had a decent knowledge of mathematics and used mathematical models to improve 
their every-day life. Most mathematics was used in an algorithmic way, designed for 
solving specific problems [27]. 

From then on the complexity of models (and their application) further continued to 
increase through the Hellenic and Roman Ages (Thales of Miletus, Aristotle, Euclid, 
Ptolemey) on to the Middle Ages (Abu Abd-Allah ibnMusa Al-Hwarizmi, Fibbonacci, 
Vieta) and modern times (Newton, Russel, Einstein). While the emphasis mostly was 
on mathematical models, other types of models were (are) used as well. Examples 
include: Visual Models (for example the Anatomy models developed by Vesalius in the 
early 16th century), structural models (e.g., scale model of an aircraft to test in a wind 
tunnel), and the more modern biologically inspired models such as Artificial Neural 
Networks (originally proposed by Warren McCulloch and Walter Pitts in 1943). 

In his "A History of Economic Theory", economist J. Niehans claims that in 1894 
the "era had began in which scientists interpreted their activity as model building^ [28, 
29]. In this very year, H. Hertz published his famous book "Principles of Mechanics". 
Therein the famous physicist writes [28]: 

We make for ourselves internal images or symbols of the external objects, 
and we make them in such a way that the consequences of the images that 
are necessary in thought are always images of the consequences of the de
picted objects that are necessary in nature . . . Once we have succeeded in 
deriving from accumulated previous experience images with the required 
property, we can quickly develop from them, as if from models, the conse
quences that in the external world will occur only over an extended period 
or as a result of our own intervention. 

By the end of the 19th century, model building began to dominate the (theoretical) 
activity in the field of physics: J.C. Maxwell used hydrodynamic analog models to 

'An accessible overview of the history of abstractions and their use in mathematics is available in [26]. 
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derive the well known equations of electromagnetism and W. Thompson, later Lord 
Kelvin, stated that he could not understand a phenomenon until he had succeeded in 
constructing a (mechanical) model of the system under consideration2 [29]. 

The word model itself comes from the Latin word modellus, a diminutive form of 
modulus, the word for measure or standard. The old Italian derivation modello referred 
to the mould for producing things. In the sixteenth century the word was assimilated in 
French (modele), taking its meaning as a small representation of some object, spreading 
into other languages like English and German [27]. The Merriam-Webster dictionary 
defines a model as 

...a system of postulates, data, and inferences presented as a mathematical 
description of an entity or state of affairs; also : a computer simulation 
based on such a system <climate models> 

For a more philosophical treatment of the term model and its use in science the reader 
is referred to the excellent discussion in [30]. 

2.2.2 Motivation 

What type of problems does modeling attempt to solve, when should one look toward 
(approximation) models? In general the motivation stems from the desire to under
stand, explain, reproduce, or predict a particular real world phenomenon (e.g., what 
are the conditions for it to occur, how docs it behave over time, etc.). 

According to [27], 

A model is a simplified version of something that is real. 

A model is a way to represent and structure knowledge about the real world and forms 
the basis of being able to reason about the world. Since a model is by definition a 
simplification of the real world, every model construction process incurs some amount 
of uncertainty that impacts its usefulness. The most crucial part of every modeling 
process is being aware of this uncertainty and how it limits the application of the model. 
A classic quote in this respect is the oft quoted dictum by renowned statistician George 
Box: 

All models are wrong but some are useful 

A very accessible overview of modeling and its pitfalls is given in |_31]. In general 
models can vary in their level of formality, explicitness, richness in detail, relevance, 
and ability to generalize. Once constructed, models arc used as a basis for: 

2This quote is attributed to Kelvin by [29] but I did not succeed in finding the original quote in the Bal
timore Lectures themselves (where the quote is said to be from). However, the lectures themselves are an 
interesting read, there Kelvin attempts to formulate a physical model for the aether, that nebulous medium 
that was seen to be necessary to explain electromagnetic radiation. The lectures are also an important mile
stone, marking the end of the mechanistic, Newtonian view of science. A view soon to be overturned by 
Einstein, Planck and others. 
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• Prediction (e.g., avalanche prediction) 

• Interpolation (e.g., obtaining values for missing measurements) 

• Extrapolation (e.g., climate extrapolation, will the world be sustainable in the 
near future) 

• Decision making (e.g., classifying tumors based on malignancy) 

• Communication (e.g., visual models, 3D structure of DNA) 

• Dimensionality Reduction (e.g., clustering of microarray data). 

• De-noising (e.g., face recognition) 

Different paradigms exist for describing the modeling process and each scientific dis
cipline has their own ideas about specific types of modelling. Some general theory 
about modeling can be found in philosophy of science, systems theory, and new fields 
like knowledge visualization. A good overview is given in [29]. 

2.3 Computer modeling and simulation 

For much of human history modeling was restricted to the pencil and paper or thought 
experiment variety. Based on painstaking observation and careful ingenious analysis, 
models were manually constructed for many natural phenomena. The examples from 
astronomy (Kepler, Hubble, Newton, and others) being perhaps the most well known. 
One can only marvel at the insight, discipline, and meticulous experimentation of sci
entists in those times (e.g., over eight years, Mendel grew an estimated 28,000 pea 
plants). However, much of this changed with the rise of mechanical devices and later, 
computers. This allowed a scientist to perform highly controlled virtual experiments on 
computer hardware through the use of simulations. This marked a complete paradigm 
shift, or as as F. Rohrlich and others [32] have emphasized, computer simulations pro
vided "a qualitatively new and different methodology . . . that. . . lies somewhere 
intermediate between traditional theoretical physical science and its empirical meth
ods of experimentation and observation". 

The use of simulation3 drastically increased the breadth and depth at which phe
nomena could be studied and predicted and allowed the solution of many problems 
where pure analytical methods had failed. 

2.3.1 Historical background 

The history of computer simulation dates back to World War II where scientists Jon Von 
Neumann and Stanislaw Ulam were faced with the problem of neutron behavior as part 

3The word simulation can have many meanings and interpretations. A good overview is given in [33]. 
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of the Manhattan project [34]. With the remarkable success of the techniques on the 
neutron problem, it soon became popular and found many applications in business and 
industry. However, even then simulation was still a complex, t ime consuming process 
that required a great deal of ingenuity in order to setup the necessary hardware and 
produce stable solutions. The analog computers that were typically used to simulate 
differential equations were tricky to handle and needed to be manually interconnected 
and configured. 

Commercially designed computers (both analog and digital) appeared in the late 
1940s and early 1950s but computer simulation was still not cost effective as a tool. 
Simulation took too long to get results, needed too many skilled people, and as a result 
cost a considerable amount in both personnel and computer time. And most disheart
ening, results were often ambiguous. 

Things improved in the 1960s when in December 1961 Geoffrey Gorden from IBM 
presented his paper at the fall Joint Computer Conference on a General Purpose Sys
tems Simulator (GPSS) [35]. GPSS came into existence rapidly, with virtually no plan
ning, and surprisingly little effort. It came rapidly because it filled an urgent need that 
left little time for exploring alternatives. It was, however, very successful and marked 
the start of a simulation community through the IBM user 's group conference SHARE. 
Meanwhile other companies were developing similar tools and languages (e.g., SIM-
SCRIPT developed by Rand Corporation). The creation of Simula by norwegian scien
tists Kristen Nygaard and Ole-Johan Dahl [36] also stems from this time. Simula was 
a special purpose programming language for simulating discrete event systems and is 
generally regarded as the first object oriented language, strongly influencing later lan
guages like SmallTalk, C++, and Java. However, in general there were little efforts to 
coordinate and compare the different approaches to tackling simulation problems. 

These limitations were addressed through a series of workshops and conferences, 
the first being a workshop on Simulation Languages at Stanford University in March 
of 1964. Consolidation efforts culminated in the first Conference on Application of 
Simulation using the GPSS in November 1967. The popularity of this conference grew 
each year and in its fifth edition in 1971 it was renamed to The Winter Simulation 
Conference which continues to this day. The increasing number of conferences and 
periodicals throughout the 1970s marked the maturity of the field and the establishment 
of a common forum and conceptual framework for simulation-based research. 

In the 1980s hardware and software prices continued to drop while reliability, per
formance, and accessibility increased significantly. This resulted in an exponential 
explosion of simulation applications and platforms, ultimately leading to the ubiqui
tous use of siinulation we sec today. A nice illustrative quote of the importance of 
simulation is given in [29]. 

Major parts of current research in the natural and social sciences can no 
longer be imagined without simulations, especially those implemented on 
a computer, being a most effective methodological tool. Natural scientists 



www.manaraa.com

2-6 C H A P T E R 2 

simulate the formation and development of stars and whole galaxies, the 
detailed dynamics of violent high-energy nuclear reactions as well as as
pects of the intricate process of the evolution of life, while their colleagues 
in the social science departments simulate the outbreak of wars, the pro
gression of an economy and decision procedures in an organization — to 
mention only a few. Recently, computer simulations even proved useful in 
moral philosophy. In fact, there is almost no academic discipline without 
at least a little use for simulations. 

A fascinating and accessible account of the meaning, importance and use of simulation 
can be found in [29]. 

2.3.2 Computer modeling process 

At the heart of computer-based simulation (versus experimental simulation) lies the 
computer modeling process. This brings us to the simplified model development pro
cess as introduced by Sargent [37] and depicted in figure 2.1. 
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Figure 2.1: Simplified version of the modeling process [37] 

From figure 2.1, the problem entity is the system or real world phenomena to be 
modeled. In order to come to a computerized model of the problem, the problem entity 
must first be captured in a mathematical/logical/verbal/... conceptual model through 
an analysis and modeling phase. This is carried out by the domain experts of the prob
lem in question. The computerized model is then the conceptual model implemented 
through a computer programming and implementation phase. Once a computerized 
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model is available, it can be used for inference about the problem entity in the experi
mentation phase. 

Checking that the theories and assumptions underlying the conceptual model are 
correct and 'reasonable' for the intended purpose of the model is represented by the 
conceptual model validity arc. Likewise, the computerized model verification arc is 
defined as ensuring that the computer programming and implementation of the con
ceptual model is correct. Determining that the model's output behavior has sufficient 
accuracy over the domain of the model's intended applicability is the purpose of oper
ational validity. Finally, data validity is defined as ensuring that the data necessary for 
model building, model evaluation and testing, and conducting the model experiments 
to solve the problem are adequate and correct. 

For the purpose of this thesis we will mainly focus on the computerized model, the 
problems it introduces, and how we can further abstract it to alleviate these problems. 

2.4 Limitations of computer models 

We have already touched on the importance of understanding the assumptions, uncer
tainty, and application domain associated with a model. The same of course applies 
to computer-based simulation, the popular saying being "Garbage In, Garbage Out" 
(GIGO). Or, as Lee [38] put it: "Bigger models simply permit for bigger mistakes". 
Karplus also elaborates on this topic in [39,40]. 

However, for this section we are more interested in the practical limitations of 
computer-based simulation, rather than those related to the problem domain and inter
pretation. 

2.4.1 Computational cost 

The most fundamental problem with computer-based simulations is that they are com
putationally expensive to run. One simulation may take many minutes, hours, days, or 
even weeks [3,41-^-3]. If a simulation need only be run a couple of times, e.g., the sys
tem under study and the simulation parameters are aheady well understood, this may 
be acceptable. However usually a scientist may wish to repeat a simulation many times 
using different parameters or starting from different initial conditions. This quickly be
comes intractable. Perhaps those most affected by this problem are applications from 
engineering design. 

There exists a huge range of design problems from electro-magnetism, aerodynam
ics, automotive, and related fields where engineers routinely have to perfonn computer 
simulations in order to design, build, and test, new devices or mechanical parts. The 
problem is amplified by the fact that the simulations are usually parametrized. The 
design variables of the problem determine a parameter space that needs to be mapped 
or searched in order to find efficient new designs that meet the application specifica-
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tions. This typically involves such data intensive tasks as optimization, design space 
exploration, sensitivity analysis, feature selection, etc. As the cost of a single sim
ulation grows this quickly becomes prohibitively expensive. Note, however, that the 
cost of one simulation need not be on the order of hours in order to impact the design 
process [44], 

Nearly thirty years ago, Goodman and Spence [45] found that response delays 
as little as 1.5 seconds in the design software can increase task completion time by 
approximately 50%. They examined the effect of system response delay on the time to 
complete an artificial task that was created to mimic design activity. The task was the 
graphical adjustment of five parameters to change the shape of a function (presented 
graphically) so that it passed between forbidden regions in the x, f(x) plane [46]. 

In [47], Simpson et. al. strive to determine the efficacy of metamodel-drivcn visu
alization for graphical design and optimization. They discern two categories in their 
investigations: (1) assessing the benefit of having a rapid response to user requests for 
performance as a function of design parameters, and (2) assessing the cost of lost accu
racy due to the use of approximations or metamodels. In particular they discuss results 
from a study involving a wing design problem where the response delay and number 
of variables can be changed in a controlled fashion to measure the impact this has on 
the design efficiency and solution strategy. They found that 

Response delay and problem size both had a significant effect on design 
effectiveness: the 1.5 second delay increased average error by 150% com
pared to the no delay case, and the average error more than doubled each 
time the problem size increased. Problem size also had a significant ef
fect on design efficiency: the average completion times for the 4 and 6 
variable problems were more than double the completion time for the 2 
variable problem. 

They describe a similar study in [46], involving an I-beam design problem. They 
observe that 

Experimental results indicate that, on average, error increased by 280% 
and completion time increased by 33% when a delay of 1.5s was present, 
and the perceived workload significantly increased as well. 

They conclude in [47]: 

Based on our findings, analyses that require more than 1.5 seconds of 
computation time should be replaced with appropriate metamodels, which 
have minimal delay to avoid the adverse impacts of response delay in the 
user interface. Furthermore, limiting the size of the problem will enable 
users to find better designs in shorter periods of time; 
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2.4.2 Large scale systems 

A second limitation of high-fidelity computer simulations, related to the computational 
cost, emerges when simulating large scale systems (e.g., global climate change, elec
tronic devices, complex mechanical machines) or integrating different multi-physics 
codes. Modeling a complex system like the Earth [48], for example, with accurate 
simulation models would require a huge number of domain specific simulators to work 
together coherently. This is not only impossible from a computational point of view, 
simply getting all the software to interoperate and run is already a non-trivial task. 

A classic example is the full-wave simulation of an electronic circuit board. Electro
magnetic modeling of the whole board in one run is almost intractable. Instead the 
board is modeled as a collection of small, compact, accurate models that represent the 
different functional components (capacitors, transmission lines, resistors) on the board. 
Examples of such applications can be found in [5,48—50]. 

2.4.3 Legacy reference model 

Finally, a last practical limitation of computer models is that the code may be pro
prietary and thus prohibitively expensive and inaccessible to scrutiny or modification. 
Alternatively, the simulation code itself or the platform it runs on may be unmaintained 
or legacy code, making it arcane to setup and use. On the other hand, the code may 
be open to modification and improvement but may require a large computer cluster to 
run in order to produce any useful results. This may pose a barrier if the necessary 
hardware is not available. 

2.5 Approximation approaches 

There are different ways to deal with the practical limitations mentioned above. Con
cerning computational cost the easiest solution is to simply throw more hardware at 
the problem and let Moore 's law do the rest. However, this is not always a solution. 
The continuous drive to finer time scales, increasing detail, and provable complexity of 
core algorithms more than enough offset the advances in computing speed and storage 
capacity. This work is concerned with a solution based on approximation. The idea is 
to reduce the overall running time by applying sound approximation methods, resulting 
in approximation models that can be used inplacc of the costly reference model . This 
brings with it the following advantages: 

1. overcoming the computational expense of engineering simulation codes 

2. much improved integration of application-independent multidisciplinary codes 
and simulations 

3. allowing for computer/operating system platform independence 
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4. gaining insight from black-box engineering models 

5. validation & verification of the underlying simulation model (see for example 
[51,52]) 

6. enabling web-based design and execution 

These advantages stem from the simple formulation of an approximation model and its 
execution speed. 

Roughly speaking, three different approaches have been developed to generate ap
proximations: model-driven, data-driven and hybrid approximation. A short overview 
is given below, an extensive taxonomy can be found in the excellent report by Janssen 
et. al. [53] or in the book by Keane and Nair [4]. For the more philosophically inclined 
a good discussion is given in [30]. 

2.5.1 Model-driven 

Model-driven approximation is known as Model Order Reduction (MOR) 4 [56, 57], 
phenomenological approximation [58], physics based modeling [4], or system theory 
based metamodeling [53]. Taking a top-down approach, the approximation procedure 
starts from the original simulator equations and derives approximations using rigorous 
mathematical techniques [59, 60]. There is a tight relation to the field of numerical 
linear algebra and most methods are based on Krylov subspace methods (e.g., [61, 
62]). Another important aspect is the calculation of dominant eigenvalues and singular 
values. An example is Proper Orthogonal Decomposition (POD) in computational 
fluid dynamics (also known as principal components analysis or Karhunen-Loeve in 
other fields) or spectral decomposition (also known as modal analysis) in structural 
dynamics [63]. 

Thus the construction of the model typically involves finding a Tower order' set of 
equations that approximate the original set using state-of-the-art algebraic techniques 
and projection operators. Possible applications lie within domains where the internal 
dynamics are of primal importance and can be stated explicitly. Examples can be found 
in electronics, large scale transportation and flow models, and in system-dynamic pro
cess models from ecology, economics and demographics. See for example the stock-
and-flow models in [64]. Some comparisons between different model-driven methods 
can be found in [65,66]. 

4 Unfortunately the terminology is not always consistent. While the term Model Order Reduction seems 
to be the most prevailing term at present, the term Reduced Order Modeling (ROM) is also used (e.g., [54]). 
In both cases they apply to dynamic, time (and frequency) dependent systems. If, besides frequency/time, 
other parameters are involved in the order reduction (e.g., geometric parameters, conductivity parameters, 
etc.) the methods may also be referred to as Parametrized MOR (PMOR) [55]. 
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2.5.2 Data-driven 

At the other extreme, data-driven (or data-fitting) approximation takes a bottom-up 
approach [67]. The exact, inner working of the simulation code is not assumed to 
be known (or even understood), solely the input-output behavior is important (e.g., 
[68]). A model is constructed based on approximating the response of the simulator 
to intelligently chosen input configurations. The simulator is usually deterministic and 
its dynamics, if present, are typically ignored. Due to the black-box approach, data-
driven modeling can be applied to almost any domain, be it ecology, economics or 
physics. The main downside of these methods is that they incorporate no problem 
specific information and thus lack traceability. Therefore they are often combined or 
extended to include such information (see the next section). 

This approach is also known as behavioral modeling, black-box modeling, or re
sponse surface modeling. Good overview references can be found in [2,4,8,44,67,69] . 
Examples of data-driven approximation methods are plentiful, with low order polyno
mial regression models being the archetypal example: 

• Polynomial/Rational functions • Gaussian Process models 

• Radial Basis Function (RBF) models Multivariate Adaptive Regression Splines 

• Multi Layer Perceptrons • Generalized Linear Interactive Modeling 

• RBF Neural Networks • Generalized Additive Models 

• Support Vector Machines • Classification and Regression Trees 

• Regression Trees • Fuzzy and Neuro-fuzzy methods 

• Kriging models • Genetic Programming 

2.5.3 Hybrid 

Finally, there is a large gray zone where the two overlap: data-driven modeling may 
include problem specific rules, coarse models, or constraints (e.g., the enforcement of 
passivity when modeling a passive electronic component or circuit) and model-driven 
modeling may incorporate simulation data as a further approximation or validation 
step. 

The final models thus combine expert knowledge over the system, that has been ab
stracted and simplified into analytical expressions or rules, together with (empirical) in
formation about the dynamic system characteristics (e.g., impulse-response functions, 
transfer functions, etc.) to come to a model where the process knowledge is explic
itly represented. These models are useful for extrapolation since the expert knowledge 
is explicit. The application domain, however, is more restricted since the simplified 
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formulations could fail to capture subtle non-linearities. In any case it is extremely 
important to explicitly state under what conditions the simplifications are valid. 

Hybrid models (also called process-based metamodels) have been successfully 
used in climate research [70,71] , hyrdrologics [72] and electronics [73]. Good ex
amples are the Knowledge Based Neural Networks (KBNN) developed by Zhang et. 
al. [74], knowledge based kriging models [75], and the various Space Mapping meth
ods [76—79]: If a simplified approximate simulator is available (referred to as the 
coarse model) as well as the original, high-fidelity simulator (referred to as the fine 
model), a data-driven model can be used to map the former onto the latter. Different 
ways have been developed to do this, references include [24,43,74] . 

2.5.4 Comparison 

Data-driven modeling makes no assumptions (which is both a strength and a weak
ness). It can be applied to any problem where the process can be described as a data 
generating black-box. This is useful for systems where the governing equations are 
not yet fully understood or known, or when the available simulation code is such that 
it cannot be altered (proprietary or legacy code) or simply not available. In contrast, 
model-driven modeling has the advantage of being intimately tied to the original par
tial differential equations (PDEs) and retaining their physics (though performing and 
validating the simplifications is not trivial). However, often it is the global input-output 
behavior that is important (e.g., will the total energy in the system be conserved, what 
is the maximal total force that a structure will hold, etc). In this case, all the approx
imation intricacies of the different subsystems in the global system no longer play a 
role and a full model-driven approximation may not be worthwhile. 

A nice summary is given by [80]: 

Some statisticians, operations researchers, and computer scientists prefer 
the first approach and want to know nothing about the "innards" of the 
model whose behavior they are attempting to replicate. They may have a 
purist philosophy of "allowing the data to speak," without "contaminating 
it" with theoretical assumptions. Or they may simply prefer not having 
to deal with the complexities of the model's innards: they may wish to 
turn the problem over to automated software. At the other extreme, some 
theoretically inclined academicians clearly prefer the second approach 
because it allows rigorous tying together of phenomena at different levels 
of detail (as when classical thermodynamics is understood from quantum 
mechanics). These, then, are the extremes. Most scientists, engineers, and 
analysts, however, should prefer something in between. 
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2.6 Surrogate modeling 

Each of the different approximation methods has its place and usefulness. The focus 
of this thesis is on the data-driven and, to a lesser degree, hybrid variety. We are inter
ested in mimicking the simulator by only taking into account its input-output behavior. 
Besides the motivation given in the previous subsections, other reasons for their use 
include [58,80]: 

• to replace or seamlessly integrate one or more legacy reference models that are 
old, opaque, and difficult to work or interface with 

• to link together different multi-physics codes 

• to enable optimization 

• to allow exploratory analysis, often there is a need to explore the behavior of a 
model over a large part of its domain 

• to reduce the number of variables or perform sensitivity analysis 

• to facilitate visualization of the design space, e.g., [81] 

• to help construct prototypes and quickly gain insight into the behavior of the 
system 

These types of models are commonly referred to as response surface models, meta
models, behavioral models, and surrogate models. 

2.6.1 Terminology 

The term Response Surface Methodology (RSM) is perhaps the oldest and is usu
ally associated with the simple low-order polynomials used for modeling experimen
tal data. The methodology has its roots in the seminal paper by Box and Wilson in 
1951 [82] that resulted from their collaboration at a chemical company when solv
ing the problem of determining optimal operating conditions for chemical processes. 
Two decades later the term metamodel, a "model of a model", was coined by Jack 
Kleijnen [83]. It covers a wider range of techniques (often stochastic in nature) and 
has its roots in operations research. The term intuitively expresses the extra layer of 
abstraction incurred (figure 2.2). 

The definition given by Davis in [58] is: 

A metamodel is a relatively small, simple model intended to mimic the 
behavior of a large complex model, called the object model, that is, to 
reproduce the object model's input-output relationships 
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Real World W Model DC Metamodel 

Figure 2.2: Modeling Hierarchy 

Another term that is often used is the term surrogate model. The origin of the term is 
less clear-cut though it also seems to have its roots in operations research where it is 
cited as far back as in 1959 [84]. It also seems to be used sporadically in medicine as 
well. While some authors do consider them different [5], in this thesis we consider the 
terms metamodel and surrogate model to be synonyms. 

A typical workflow when using surrogate models for engineering design is as fol
lows (based on [5]): 

1. Model formulation involves understanding the problem, defining the design ob
jectives, and identifying the problem's input and output parameters; this may 
include specifying the names and bounds of the variables that will be part of the 
design, as well as characterizing the responses. At this point, it is also appro
priate to determine whether the use of a metamodel is justified, or whether the 
analysis should be conducted with the original reference model. 

2. Design selection entails choosing the type of experimental design that will be 
applied to run the simulator. The true output responses obtained from these runs 
are used for fitting the surrogate model. 

3. Metamodel fitting requires specifying the type and functional form of the surro
gate model. 

4. Assessment of the surrogate model involves specifying the performance mea
sures that will be used to characterize the fidelity of a metamodel, as well as 
choosing an appropriate validation strategy. 

5. Gaining insight from the surrogate model and its error permits identifying impor
tant design variables and their effects on response variables. This is necessary to 
understand the behavior of the reference model, or redefine the region of interest 
in the design space. 
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6. Using the surrogate to predict responses at untried inputs and performing opti
mization runs, trade-off studies, or further exploring the design space. 

2.6.2 Global versus local 

It is important to make a distinction between two different applications of surrogate 
models. The first is by far the most popular and involves building small surrogates 
for use in optimization. This is known as Surrogate Based Optimization (SBO) or 
Metamodel Assisted Optimization (MAO). With SBO the surrogate model itself is not 
the main goal but used to approximate the fitness landscape to drive the optimizer. 
The surrogate models in use are often quite simple (cfr. traditional Response Sur
face Methodology), with polynomial regression being the most popular among prac
titioners [85]. This, of course, need not be the case. For example, complex ensemble 
methods combining different surrogate model types have been used [86, 87], as have 
been innovative trust region methods [88] and sampling techniques [89,90]. Excellent 
overview references of SBO are given by [4 ,44 ,63 ,86] . Well known examples in this 
category are the proprietary tools developed by LMS/Noesis (Optimus, Virual.Lab)5 

and Vanderplaats R&D (VisualDOC)6 . From academia, the more prominent projects 
are Geodise [91] from the University of Southampton (now commercialized as dezine-
force), Nimrod/O [92] from Monash University, and the DAKOTA toolkit from Sandia 
National Labs [93]. A good review of available tools in this category is also given 
in [2,44]. 

In the second case one is not interested in finding the optimal parameter vector but 
rather in the global behavior of the system. Here the surrogate is tuned to mimic the un
derlying model as closely as needed over the complete design space. This is the focus 
of this thesis. Such surrogates are a useful, cheap way to gain insight into the global 
behavior of the system. Optimization can still occur as a post-processing step but is 
not the main goal. In addition, they can cope with varying boundary conditions. This 
enables them to be chained together in a model cascade in order to approximate large 
scale systems. A good overview of this respect is given in [5]. Even if optimization is 
the goal, one could argue that a global model is less useful since significant time sav
ings could be achieved if more effort were directed at finding the optimum rather than 
modeling regions of poor designs. However, this is the logic of purely local models, 
but they forgo any wider exploration of radical designs [94]. 

Of course the dichotomy is not strict; ideas and approaches between the two types 
can, and should, be exchanged, allowing for different hybrids to emerge that borrow 
ideas from both types. A good example in this respect is the popular Efficient Global 
Optimization (EGO) approach first described by Jones et. al. in [89] and elaborated 
by many others (e.g., [90]). In the EGO approach a global model is constructed to 

http://www.lmsintl.com/ 
http://www.vrand.com/ 

http://www.lmsintl.com/
http://www.vrand.com/
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capture the complete design space and a sampling function is used to refine it in the 
neighborhood of the optima. In this way the chances of getting trapped in a local 
optimum are reduced [95] (see also section 4.6). 

Concerning global models, one could argue that in order to obtain an accurate 
global surrogate one still needs to perform numerous simulations, thus still having to 
deal with the high computational cost of simulations. While naturally the methodol
ogy has its limitations, this is not entirely the case since: (1) building a global sur
rogate is a one-time, up-front investment (assuming the problem stays the same), (2) 
distributed computing can speed-up the evaluation time and (3) adaptive modeling and 
adaptive sampling (sequential design) can drastically decrease the required number of 
data points to produce a good model. However, while intelligent modeling and data 
collection schemes can extend the application range of global approximations, the in
famous curse of dimensionality is inescapable. As the number of dimensions increases 
the number of points needed to maintain a high global accuracy increases exponen
tially. At that point one must relax the accuracy requirements, reduce the dimensional
ity (e.g., through factor screening [96]), or turn towards other approximation methods 
(cfr. section 2.5). 

2.6.3 Forward versus inverse 

There is also a distinction between forward surrogate modeling and inverse surrogate 
modeling and often the motivation for the former is to be able to perform the latter. 
In classic forward surrogate modeling, the surrogates provide estimates of simulation 
outputs as a function of design parameters. However, often in the design of a system or 
product, one has performance targets in mind, and would like to identify system design 
parameters that would yield the target performance vector [5,97]. This is illustrated in 
figure 2.3. 

Inverse model 

Forward model 

Figure 2.3: Forward versus iiwerse modeling. 

Typically, this is handled iteratively through an optimization search procedure, pos-
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sibly with robustness constraints [98]. As an alternative, one could map system perfor
mance requirements to design parameters via an inverse surrogate model [99]. How
ever, this is a difficult problem since the inverse mapping from function value to design 
variable values is not uniquely defined. 

2.6.4 Applications 

At heart, the surrogate modeling problem is a very generic problem. Therefore it comes 
as no surprise that surrogate models have found applications in many diverse fields 
where they are used to approximate some complex and/or expensive reference model. 
To illustrate the diversity of applications some examples are listed below: 

• Economics: Sensitivity analysis in investment problems [100] 

• Operations research: modeling buisnes networks [101] 

• Robotics: evolution of gait patterns of four-legged walking robots [102] 

• Electronics: mobile antenna design [103] 

• Physics: study of proton beams [104] 

• Chemistry: prediction of fibrinogen absorption onto polymer surfaces [105] 

• Automotive: study the effect of a frontal impact on a vehicle [13] 

• Environmental Science: studying the vulnerability of ground water to pesticide 
leaching [106] 

• Biology: prediction and explanation of biodiversity data [107,108] 

• Geology: modeling of (oil, gas, water, ...) reservoirs [109] 

• Meteorology: studying the effect of emission reduction on ozone concentrations 
[110] 

• Sociology: modeling innovation diffusion [111] 

• Medicine: modeling colon coloration [112] 

2.6.5 Words of caution 

It is clear that surrogate modeling methods have a very wide application domain. How
ever, as any tool or technique, surrogate modeling has its restrictions and it is important 
to be well aware of these. 

For example, it makes no sense to apply surrogate modeling methods if the simu
lator is simple and cheap to evaluate. Enough data can easily be generated and there is 
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no need for a second level of abstraction. There is one exception to this rule though. In 
some cases too much data is available. For example, a dense data set may be generated 
as part of a production plant measurement process or historical aggregation. In this 
case surrogate modeling methods can be useful to 'summarize' the data in an efficient, 
re-usable, analytical model (an example is given in section 10.6). 

The very first step in the surrogate modeling process should always be a critical 
one: Is surrogate modeling the best way to accomplish the necessary goals? Maybe 
faster machines, parallel computing, more manpower, analytical methods, a faster im
plementation of the simulator, etc. are more cost effective solutions. The answer to 
this should depend on a thorough evaluation of: 

• the available time, money, manpower, software, expertise for surrogate modeling 

• the available expertise about the original simulator 

• the need for extrapolation and traceability of the underlying physics 

• where and how often the surrogate model will be used 

• how often the surrogate model will need to be updated to reflect changes in the 
simulator 

As we shall see in the next chapter, surrogate modeling has its own set of challenges: 
experimental design, sample selection, model selection, etc. These should also be taken 
into account. Finally, one should always remember that a surrogate model is only as 
good as the available data and designer. Surrogate models are still models, making 
model assessment & selection crucial steps in the design process. 

2.7 Conclusion 

This chapter reviewed the modeling problem in a broad context, discussing history, 
motivation, and application. Throughout the sections the topic was narrowed down 
to what is the core subject of this thesis: forward global surrogate modeling methods 
based on a (mainly) data-driven approach. The motivation for the use of these meth
ods should be clear as well as how they relate to more model-driven methods. For 
readers needing more information about the general surrogate modeling domain, good 
references can be found in [2 ,4 ,44 ,67 ,69] . 
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What we observe is not nature itself but nature exposed to our method of 
questioning. 

— Werner Karl Heisenberg 

3.1 Introduction 

With the context of the surrogate modeling problem defined we can now take a look at 
how surrogate models can be constructed. This chapter discusses the different aspects 
and trade-offs that come into play in order to apply surrogate modeling successfully. 
Each of the different surrogate modeling sub-problems is treated in detail as well as 
how they may be integrated into a single algorithm. 

3.2 Problem formulation 

The mathematical formulation of the problem we are dealing with is as follows: 
Approximate an unknown multivariate function / : Q H C , defined on some do

main Q. c M.d, whose function values Y = { / (x i ) , . . . , / (x^)} C C 7 are known at a fixed 
set of pairwise distinct sample points X = {x\, ...,x*} C Q. Constructing an approxi
mation requires finding a suitable function f from an approximation space S such that 
f : Q.\-+ <Cq G iS* and / ' closely resembles f as measured by some criterion £,, where E, 
consists of three parts: 
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S = (A,e,T) (3.1) 

A is the model quality estimator with A : S i—> 1 + (lower is better), e the error (or loss) 
function, and r is the target value required by the user. This means that the global 
surrogate model generation problem (i.e., finding the best approximation/1* e S) for a 
given set of data points D = {(xi ,f(x\)),..., (XA-, , / (X^))} can be formally defined as 

f* = argminargminAfe , f, Q ,D) (3.2) 

such that 

A(e,fi*e,D)^T (3.3) 

where f^ is the parametrization 6 (from a parameter space 0 ) o f / , and f^e is of 
model type t (from a set of model types T). 

The first minimization over t G T is the task of selecting a suitable approximation 
model type, i.e., a rational function, a neural network, a spline, etc. This is the model 
type selection problem. In practice, one typically considers only a single t G T, though 
others may be included for comparison. Then given a particular approximation type t, 
the task is to find the hyperparameter assignment 9 that minimizes the model quality 
measure A (e.g., determine the optimal order of a polynomial model). This is the 
hyperparameter optimization problem, though generally both minimizations are simply 
referred to as the model selection problem. Many implementations of A have been 
described: the hold-out, bootstrap, cross validation, jack-knife, Akaike's Information 
Criterion (AIC), etc. 

In order to construct / ' the dataset D needs to be populated. Traditionally the size 
and distribution of D is chosen up-front. However, since / ( " ) *s expensive to compute 
it becomes important to avoid unnecessary simulations. However, since the complexity 
of the response surface is not known up-front, defining an a priori data distribution is 
difficult. Instead data points (also known as support points, samples, or design sites) 
must be selected iteratively, at locations where the information gain will be the greatest. 
Mathematically this means defining a sampling function 

O p y ) =XJ+l wi thy = 0,..,N (3.4) 

which proposes a new set of sample points based on the data available so far. This 
effectively results in a set of nested subsets: 

D0 c£>i C£>2 C . . . C A V (3.5) 

In order to construct Do, which seeds the sampling function <I>, an initial set of sample 
locations XQ is needed. We refer to XQ as the initial experimental design and it is 
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constructed using one of the many algorithms available from the theory of Design and 
Analysis of Experiments (DoE) (section 3.6). 

Since the models need to be updated at each sampling iteration this procedure ef
fectively results in not one, but a sequence of models 

/ D O ' T D ] >••••>JDN (3-6) 

where fp. is the model trained on dataset Dj and resulting from the minimization in 
equation (3.2). 

The task of <J> is to generate a new set of maximally informative samples based on 
one or more criteria (p. Thus this is again an optimization problem based on the set of 
models and data available so far: 

X / + 1 = a r g min (j>(Xlt {/%,..., j % },£>,-) (3.7) 
A/c(Jf \U/= 0A» 

and subject to the constraint that the number of data points \X;+\ j selected each itera
tion should be minimized while at the same time maximizing the benefit to the model 
./' with respect to the criteria t, x. 

This process is called adaptive sampling, but is also known as active learning 
[113], reflective exploration [73], Optimal Experimental Design [114], Sequential Ex
ploratory Experimental Design [9], and sequential design [115]. Adaptive sampling is 
often applied together with Kriging models. An excellent overview of this work can 
be found in [8]. 

3.3 Theoretical remark 

As stated above, the objective of surrogate modeling is to generate an approximation 
surface, based on a limited set of samples, for an unknown function fix). Considering 
this objective it is interesting to recall some interesting related theoretical work by 
Kolmogorov and others. 

In 1900 the famous German mathematician David Hilbert gave a memorable lec
ture at the Second International Congress of Mathematicians in Paris. During his lec
ture he listed 23 conjectures, hypotheses concerning unsolved problems which he con
sidered the most important outstanding mathematical problems of the 20th century. 

A possible critiqiic of the iterative procedure explained here is that it has no foresight, or in optimization 
terms, it performs a local search. In a way this is true. The described iterative procedure will always optimize 
the model type and structure in function of the data available at that point in time (ignoring non data-based 
model selection knowledge for the moment). So the procedure treats every sampling step as potentially the 
last one, there is no higher level planning or foresight. This is where some authors make the distinction 
between passive and active sequential design. So in that sense the search is local, and the best model at time 
1 I- 1 may turn out quite different from the one at time /. But as more data arrives the iterative procedure will 
home in on the correct solution (assuming the model keeps following the data). 
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His 13th conjecture stated that there exist continuous multivariate functions which can
not be decomposed into a finite superposition of continuous functions of fewer vari
ables [116]. In 1957 the eminent Russian mathematician Vladimir Arnold disproved 
Hilbert 's hypothesis [117], shortly followed by Kolmogorov [118] who proved (with 
constructive proof) that any continuous function of n dimensions can be completely 
characterized by a 1-dimensional continuous function. Mathematically, Kolmogorov's 
original theorem can be stated as follows [116,119]: 

Theorem: For all n > 2, and for any continuous real function f ofn variables on 
the domain [0,1], f : [0,1]" —>• M, there exist n(2n + 1 ) continuous, monotone increas
ing univariate functions on [0, 1], by which f can be reconstructed according to the 

following equation 

In / n \ 

/(X} , ...,X„) = 2 ^ ( X VWX/>) I (3-8> 
9=0 \ P = 1 / 

The functions \f/pq(s.p) are universal for the given dimension n and independent on 
f. tf>q does depend on f and is a continuous, one-dimensional function which totally 
characterizes f(x.\, ...,x„) (<pq is typically highly non-smooth). Consequently, "we see 
that the approximation problem is not so much the dimensionality, but the complexity 
of the function (high dimensional functions typically have the potential to be more 
complex) " [119]. 

This fundamental approximation theorem is but one of the many intruiging results 
of research on the fundamental properties of optimization, learning, computing, and 
approximation algorithms. The work by Goedel, Turing, Solomonoff comes to mind 
as well. For example, Solomonoff's Universal Theory of Prediction, which forms the 
theoretical foundations for machine learning and is closely linked to Bayesian theory. 
An interesting overview of this line of work can be found in [120—122]. 

3.4 The Bayesian view 

It is important to remark that an alternative way exists to tackle the surrogate modeling 
problem. Namely one rooted in Bayesian statistics. The Bayesian view starts from the 
premise that the process of constructing f is one full of uncertainty [123] and that this 
uncertainty should be carefully quantified and taken into account when constructing 
f or making predictions with f. There is a wealth of information available on these 
topics with most work on Bayesian models and Gaussian Process models. Key authors 
in this respect are Kenneth, and O'Hagan. Only the basics are sketched here, more 
information can be found in [123—127] and the seminal work by Jaynes [128]. 

Instead of the term surrogate or metamodel, the term emulator is used. An emulator 
is a stochastic representation of a deterministic function and distinguished from other 
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types of approximation models (e.g., SVMs) by providing a probabilistic assessment 
of uncertainty about / ( • ) • The model that is typically used to define / is the Gaussian 
process model. A Gaussian process is a collection of random variables, any finite 
number of which have a joint Gaussian distribution [127]. 

./(•) is regarded as an unknown function and the uncertainty surrounding it is repre
sented by means of a Gaussian process (for simplicity we only consider the real-valued 
output case): 

/ ( . ) | 5 , S , r - J V ( w ( . ) , c ( . , . ) 2 : ) (3.9) 

conditional on hyperparameters 2?,£ and r . The notation here means that Vx],X2 € 
a £ [ / ( x , ) | 5 , £ , r ] = iw(xi) and C o v [ / ( x i ) , / ( x 2 ) | 5 , £ , r ] = c ( x , , x 2 ) £ , where c(-,-) 
!S a positive-definite function such that Vxc(x ,x) — 1. Thus a stationary, separable 
covariance structure is assumed with the covariance between the outputs given by the 
positive-definite matrix £ <= ]R+ and with c ( - , ) providing spatial correlation across 
the input space. Typically the mean and correlation functions are modeled as 

m(x\) = Brh(x\) (3.10) 

c (x i ,x 2 ) =exp{ — (xi -x2)
TR(xx - x 2 ) } (3.11) 

with h : Q i—> W" an arbitrary vector of m regression functions h\ (x), ...,h,„(x) shared 
by each output /}(•)> J — l,~-,qi B = \fi\-, •••,&q] £ Km,? a matrix of regression coeffi
cients; and R a diagonal matrix of p positive roughness parameters r = {r\, ...,r(j) (the 
correlation parameters). For the prior mean structure m(x) a linear regression has been 
found to be adequate in most applications but higher-order polynomials may be used as 
well. A Gaussian correlation function for c(-, •) is also typical [129]. To complete the 
model specification priors must be selected for the unknown hyperparameters ~L,B,r. 
Conventionally 'non-informative' priors are used if little other evidence is available. 
Once the model is specified, standard Bayesian inference methods can be used to per
form prediction and update the model with new data. For details please refer to the 
references above. 

This Bayesian approach has a number of advantages. The most important being 
that every bit of uncertainty is quantified through the priors and taken into account 
throughout the inference. This gives more confidence in the model since it is always 
clear to what degree the model can be trusted. This also allows for a natural formula
tion of an adaptive sampling procedure: select data points in those regions where the 
uncertainty is reduced the most. The use of priors also allows one to incorporate prior 
knowledge there may be about the expected behavior of the response. Finally, another 
advantage is that the final result of the model construction procedure is not a single, 
unique solution but rather a distribution over all possible models. 

file:///fi/
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The majority of research in this area has been conducted using Gaussian Processes. 
Gaussian process models are very closely related to Gaussian Neural Networks, Krig-
ing models, RBF models, and SVM models. An excellent treatment of the theory and 
links between these different model types can be foud in [127]. We will not discuss the 
Bayesian approach any further in depth since it warrants a dissertation in its own right. 

3.5 Surrogate modeling requirements 

3.5.1 Reference model 

In order to apply surrogate modeling methods, obviously some kind of reference model 
(also referred to as a simulator, object model, or disciplinary model) is needed. Be 
it in the form of a simulation code and its dependencies, a set of equations, or a pre-
generated dataset. The more information available about the reference model the better, 
this is where interaction with the domain experts is paramount. Useful information 
includes: 

• state of the implementation (stable, under development, ....) and usage require
ments (including license information) 

• system type (deterministic, stochastic, dynamic, ...) 

• availability of existing approximation models and their restrictions 

• dimensionality, domain, and type (real, complex or discrete) of the inputs and 
outputs 

• potential for missing or don 't care values and estimation of the noise level/type 

• any information about discontinuities, non-linearities, sensitive parameters, epis-
tasis, non-excited modes (sleeping dynamics), feedbacks, etc. 

Remember that, in principle one should be able to use the reference model directly. 
However for practical reasons an explicit choice is made to use an approximation 
model instead. Therefore, if the quality of the reference model is inadequate for the 
task at hand one should seriously question the usefulness of an approximation model 
based on the reference model (Garbage-In-Garbage-Out). 

3.5.2 Model requirements 

Besides the reference model, arguably the most important aspect of surrogate modeling 
is knowing what minimum requirements the surrogate has to meet in order for it to be 
useful within the final application. Defining these requirements turns out to be much 
more challenging than one would expect at first. We shall revisit this topic in chapter 
8. For now it suffices to give a list of possible questions that should be asked: 
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• What software, time, budget, expertise,.. . is available for building and testing the 
surrogate model. For example, [130] report 152.6 hours necessary to construct a 
RBF neural network versus 3 minutes for a regression tree on the same dataset. 
Depending on the situation this may or may not be a problem. 

• How will the quality of the metamodel be assessed (formal analysis, benchmark 
scenarios, etc.). 

• What level of traceability is required? What process knowledge, physics, param
eter interactions, etc. should be recognizable in the final metamodel. This also 
includes things like adhering to documentation and rapportation protocols. 

• What will the surrogate mainly be used for: interpolation, extrapolation, vali
dation, etc.. Note that using a purely data-based surrogate model outside of the 
domain it was designed for is pure speculation. 

• What deviations with respect to the reference model are acceptable and how will 
they be measured (accuracy). 

• Should the surrogate model be able to associate any prediction with the uncer
tainty of that prediction 

• What are the resource restrictions on the final surrogate (execution speed, mem
ory usage, ...). For example, this could be an issue if the model is integrated into 
a hardware controller or software package. 

• Should the metamodel be able to interoperate easily with other systems (expert 
system, database, ...) 

• Will the metamodel be used within a chain of other metamodels. If so, what are 
the requirements on data scaling/format, software platform, etc. 

As always, the answers to these questions will depend completely on the problem and 
target application. The process of building an approximation model for use in missile 
control will be completely different than one built for data visualization. 

3.6 Data collection strategy 

If the decision is made to construct a surrogate model for a given data source, one of the 
first questions that arises is what algorithm to use to query the data source. The relevant 
theory is referred to as experimental design, or, Design of Experiments (DoE) and dates 
back to work by Fisher [131] in the context of designing physical experiments. 
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3.6.1 Classic "one-shot" experimental design 

The goal of DoE is to determine the optimal set of experiments to perform (from a 
given parameter space) such that they are maximally informative (according to one or 
more criteria) given a limited budget. The theory was initially developed for physical 
experiments, thus the proper treatment of measurement error played a major role. Ac
cording to Fisher important principles of experimental design are: randomization (of 
the sample population), replication (to deal with measurement error), blocking (group
ing experimental units to reduce variability), orthogonality, and comparison. Examples 
of classic designs are fractional factorial, Plackett—Burman, split plot, and nested de
signs. 

These designs were later adapted, improved, and new designs formulated with the 
development of response surface methodology in the early 1950's by Box and Wil
son [82] (e.g., Box-Bhenken and Central Composite designs). The methodology be
came very successful, in 1971 Myers notes the "successful application of known RSM 
techniques in such areas as chemistry, engineering, biology, agronomy, textiles, the 

food industry, education, psychology, and others" [132, 133]. This work on RSM de
signs eventually led to the development of so-called optimal designs, a very important 
and widely used class of methods. 

The concept of optimal design was pioneered by the Finnish mathematician Gustav 
Elfving in the early 1950's [134] and the work by Kiefer and Wolfowitz in the early 
1960's [135]. The adjective optimal refers to the fact that the distribution of points 
is such that they are optimal with respect to some statistical criterion and metamodel 
(e.g., a second order polynomial). In the design of experiments for estimating statisti
cal models, optimal designs allow model parameters to be estimated without bias and 
with minim vim-variance. A non-optimal design requires a greater number of experi
mental runs to estimate the parameters with the same precision as an optimal design. 
The optimality of a design depends on the statistical model and is assessed with respect 
to a statistical criterion, which is related to the variance-matrix of the estimator. Clas
sic optimality criteria include A-optimality, D-optimality, and E-optimality. The letters 
A,D,E referring to which matrix operator is used to measure optimality given the infor
mation matrix XTX of the design (A=average or trace, D=determinant, E==eigenvalue). 
If the type of statistical model is not assumed to be known (e.g., Kriging only assumes 
smoothness) then space-filling may become the criterion (see below). 

A vast amount of literature is available from the statistics community on these 
topics and the resulting methods are used in fields ranging from agriculture to chem
istry and medicine (e.g., optimal subject selection in clinical trials). With the rise of 
computer-based experimentation (cfr. section 2.3) these methods were adapted and 
further extended to the virtual domain that is computer simulation. The main works 
in this respect being that by Sacks et. al. [6] and Kleijnen [8], This evolution brought 
about a major change in mindset: with computer experiments data is deterministic and 
noise free. There certainly are stochastic codes, but the main focus of computer ex-
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perimentation has been on deterministic codes. Thus, in computer experiments there 
is no need to do replicates (as opposed to physical experiments) and the classic theory 
of optimal design is not useful. Instead, a major concern is to create an experimen
tal design which can sample the complete design space in a representative way with 
a minimum number of samples [136]. In this sense popular methods are orthogonal 
arrays and Latin Hypercube Sampling (LHS)2. A good overview of this line of work 
can be found in [138,139] and the references therein. 

3.6.2 Sequential experimental design 

There arc a number of drawbacks to the use of static experimental designs in the con
text of this thesis. First, static designs require the number of points to be chosen up
front. What if this number proves to be too low? How/where should more points be 
added? Given the iterative nature of the design process it is therefore natural to con
sider a sequential, or iterative DoE. An algorithm is defined that sequentially selects 
and collects data points until some threshold is reached, preventing the expensive cost 
of over-sampling (cfr. section 3.2). Many sequential algorithms have been defined, 
including iterative formulations of classic DoE methods. 

A first method worth mentioning are designs that are generated from minimum 
discrepancy sequences. Minimum descrepancy sequences were originally conceived to 
develop space-filling points, primarily for the purpose of efficient numerical integration 
of multidimensional functions. Popular examples are Hammersley, Halton, Sobol and 
Faure sequences. These methods are also referred to as quasi-Monte Carlo methods 
since they generate a deterministic sequence of points. This makes them useful for 
incremental model building [4]. 

There is of course also the Bayesian approach [140]. In the Bayesian framework, 
a prior distribution over the space of all possible functions from inputs to outputs is 
set. Given available data, a posterior distribution is generated from which new points 
can be drawn. This method extends naturally to incorporate measurement and predic
tion of derivatives, partial derivatives and definite integrals of the function [9]. The 
difficulty, as is typically the case with Bayesian methods, is a suitable formulation of 
the prior. Examples of Bayesian experimental designs include Mean Squared Error 
designs, Minimax Designs, and Maximum Entropy Sampling [23], 

In general the sequential design problem can be seen as an iterative optimization 
process driven by one or more criteria (section 3.2). Possible criteria include: 

• distance from neighboring points (space-filling) 

• non-linearity of the response 

• uncertainty of the surrogate model in use 

Latm Hypcicubc sampling grew out of research into risk analysis, sec [137]. 



www.manaraa.com

3-10 CHAPTER 3 

• distance from the (estimated) optima 

• degree of constraint violation (if any) 

Depending on the surrogate modeling goal (optimization versus global model) the sub
set of criteria used will vary (note that multiple criteria may be used in concert). The 
fundamental choice being whether to focus on 

• exploration: selecting points in regions of which little or no information, or 

• exploitation: selecting points in the most promising regions. 

Remark the similarity with the Bias-Variance trade-off problem from machine learning 
(section 3.7.2) and remark that this is, at heart, again an optimization problem with 
different solution strategies (see for example [95]). 

The second criteria above ("select proportionally more points in highly-nonlinear 
regions of the response") is the one most often used by authors when proposing new 
sampling algorithms. However, applying it implicates an assumption that is not al
ways true, often overlooked, and worth emphasizing here. The assumption is that 
the nonlinear regions are the most difficult to fit and thus require proportionally more 
data. While intuitively appealing the assumption is not always valid. For example 
Kriging, and other kernel-based models, often have little problem capturing complex 
non-linearities but have much more difficulty with the smoother, flatter regions of the 
response. Furthermore, data clustering induced by focusing too much on nonlinear re
gions can cause numerical problems [141]. The goal of sequential design strategies is 
to improve the accuracy of the response model and reduce the uncertainty associated 
with its use. While the region that is deemed most interesting by these two criteria may 
coincide with the most nonlinear region, this is definitely not always the case. More 
discussion and concrete examples may be found in [9 ,142,143] . 

This remark aside, some authors also make the explicit distinction between passive 
and active adaptive sampling. E.g., Gautier et al. [144—146] do so from a systems 
control perspective: 

• passive sequential design: each step in the sequential design is considered as 
the last one to be performed 

• active sequential design: takes into account the fact that further observations 
will be available when tuning the model 

A rich variety of adaptive sampling methods have been proposed [ 12 ,14 ,23 ,115,13 8, 
147—156]. A promising area of current research is the combination of multiple sam
ple selection criteria in a dynamic manner, e.g., as done in [157]. This point will be 
revisited in section 4.5.2. 
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3.6.3 Remarks 

Three important remarks can be made with regard to the data collection strategy. First, 
in the two preceding sections we have placed the focus on data collection in the input 
space. However, data collection requirements may needed on the output space as well. 
For example an application may require that a certain output band is more densely 
sampled relative to the remaining range. 

Second, as should be clear from the discussion, we arc concerned with the case 
where the data source is an unknown function that should be queried. For complete
ness, sometimes this is not the case but instead pre-calculatcd data is available in the 
form of a fixed dataset. In these cases the question arises if and how the data should be 
sub-sampled (compressed) in order to make it more balanced (ensure a particular cov
erage distribution of the input space). These problems are more related to data mining 
and local learning methods (section 3.7.5) than the surrogate modeling algorithms that 
are the topic of this thesis. Flowever, a good overview of motivation and algorithms 
involved is given in chapter two of [158]. 

We conclude with a critical remark with respect to experimental designs that is best 
summed up by [159]: 

The results show that there are statistically significant differences between 
the approximation results of employing different designs, but more often 
the difference is not significant. In most cases, the number of runs or the 
sample size has stronger impact on the accuracy than do different designs. 
When the dimension is low, a small size increment can often reduce more 
error than do "better designs. " To get the desired precision by one-stage 
method, enough samples may be needed regardless what design is used. 
Sample size determination may need much more attention for computer 
experiments. 

Though the quote only refers to static, one-shot designs and is unclear about higher 
dimensional cases, it is an important reminder that an adaptive, 'intelligent' approach 
does not automatically guarantee significant time savings and improved results. The 
author is unfortunately unaware of analogous work in the case of sequential design. 

3.7 Modeling strategy 

Some kind of executable mathematical model is needed to interpolate and extrapo
late between the raw data. This again involves a number of choices, detailed in the 
following subsections. 
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3.7.1 Model type 
The first obvious problem is selecting the surrogate model type and the model pa
rameter optimization method (cfr. the two minimizations in equation 3.2). Popular 
surrogate model types include Radial Basis Function models, Rational Functions, Ar
tificial Neural Networks, Support Vector Machines, Multivariate Adaptive Regression 
Splines, and Kriging models. 

Proper choice of the model type is important and depends on the required (sec 
also [5]) 

• interpretability 

• adaptability 

• target implementation platform 

• resource constraints 

• amount of available data 

• prediction speed 

• composability (will there be multiple models that need to be combined) 

• traceability (how well can relationships, behavior, dynamics, ... explicitly be 
traced back to the reference model) 

• portability (how easy is it to port the surrogate model to different languages and 
platforms) 

Different model types are preferred in different domains. For example rational func
tions are widely used by the Electro-Magnetic (EM) community [160, 161], while 
ANNs are preferred for hydrological modeling [67]. Differences in model type usage 
are mainly due to practical reasons (available expertise, tradition, computation time, 
etc.), though there are some exceptions: In some cases the choice of the metamodel 
type can also be motivated by knowledge of the underlying physics3 [ 162] or by the 
special features the model provides: for example the uncertainty prediction based on 
random process assumption in Kriging methods4 [163]. 

However, in general there is no hard theory that can be used as an a priori guide, 
thus claims that a particular model type is superior to others should always be taken 

3 Knowledge of the physics of the underlying system can make a particular model type to be preferred. 
For example, rational functions are popular for all kinds of Linear Time-Invariant (LTI) systems since theory 
is available that can be used to prove that rational pole-residue models conserve certain physical quantities 
(sec [162]). 

4Kriging models are closely related to Gaussian Process (GP) models and often Kriging and GP models 
arc used as labels for the same techniques. Great similarities between GP models, SVM models, RBF 
models, and RBF Neural Networks exist as well, as has been discussed in [127]. 



www.manaraa.com

ADAPTIVE GLOBAL SURROGATE MODELING 3-13 

with a grain of salt. This is related to the so called No-Free-Lunch-Theorems [164]. 
One of the many formulations is as follows5: 

...it is impossible to justify a correlation between reproduction of a train
ing set and generalization error of the training set using only a priori rea
soning. As a result, the use in the real world of any general izer which fits a 
hypothesis function to a training set (e.g., the use of back-propagation) is 
implicitly predicated on an assumption about the physical universe. [165] 

Basically the theorems explain why, over the set of all possible learning problems, each 
algorithm will do on average as well as any other due to the bias in each algorithm. 

We shall revisit this point in much more detail in chapter 7. 

3.7.2 Hyperparameter identification 

Selecting the model type (optimization over T in equation 3.2) is only part of the 
problem. Once the model type has been fixed, the complexity of the model needs to be 
chosen as well (optimization over 6). Each model type has a set of model parameter 6 
(hyperparameters) that control the complexity of the model and thus the bias-variance 
trade-off. 

The bias-variance trade-off [166] is one of the most important concepts in machine 
learning and worth re-stating here. The trade-off helps explain why there is no uni
versally optimal learning method. Its derivation is usually given for the Mean Square 
Error (MSE) but derivations for other loss functions exist as well. 

Let D be a set of noisy training data generated from a true function _y = fix) and 
le ty = J\x) be a model that fits the data. So D = {(xi , /*i ) , . . . , (x*, t k)} with tt =y+V 
and E{v} = 0. A natural way to assess the quality of the model is through the MSE 
with respect to an infinite test set (hence the use of the expectation): 

E{MSE}=E{\^iti-yif\^^E{iti~yi)
2^ (3.12) 

Working out the last sum gives: 

Sec also http://www.no-frcc-lunch.org/. 

http://www.no-frcc-lunch.org/
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E{(t,-y,)2} = 

Note 

Elitf-yi+yf-yj)2} 

E{{ti -yt)2} +E{iyt -yif}+2E{iyi - # ) ( ' / -yt)} 

E { v 2 } +E{iyt -yi)
2}+2{E{yiti}-E{y2} -E{yiti} + E{yiyi)} 

Eiv^+Eiiyi-y;)2} 

E {yiti} = yt since f is deterministic and E {tj} = yt 

E {yt } = y2 since / ' is deterministic 

E {yiti} = E {yiiyi + v)}=E {yiyi + j?/V> = E {yiyi} + 0 

since the noise in the infinite test set over which the expectation is 

probabilistically independent of the model f 

Thus, the MSE can be decomposed in expectation into the variance of the noise and 
the MSE between the true and predicted values. Further decomposition gives (recall 
that the bias of an estimator 6 for 6 is bias{6} = E{6 — 6}): 

E{iyi-yi)2} = Eiiyi-Eiy^+Eiy^-yi)2} 

= E{(yi-E{yi})2}+E {(E{yi} - yt)2} +2E{(E{y~i} _ # ) ( / , . _ £ { # » 

= bias2 + Var{yi}+2(E{yiE{yi}}-E{E{yi}
2} -E\ym} + E {ytE{fi 

= bias 4- Var{y(\ 

Note : E{yiE{y~i}} since f is deterministic and E {E{z}} = z 

E{E{yi}
2}=E{yi}

2 

E {ytti} = E {yiiyi + v)}=E {yiyi +yfv} = E {yiyi} + 0 

E{yiyt} =yiE{yi} 

E{yiE{yi})}=E{yi}
2 

Thus the final decomposition of MSE in expectation becomes: 

E {(tt —yd2} = Var{noise} + bias2 + Var{yt} (3.13) 

The optimal model / ' (with respect to the MSE loss function) is the one that minimizes 
this expression. Since the variance of the noise is fixed, in order to minimize the MSE 
both the variance and bias must be minimized. However, this is not trivial since this is 
a trade-off. Take the two extremes for example. Var{y~i} can be minimized by using a 
model that always predicts a constant value. In that case the model prediction is inde
pendent of the data (Var{yi} = 0). However, the amount we are off the real function 
(the bias) would be huge. On the other hand, if the model perfectly interpolates the 
data {bias2 = 0 since E{y} = y) the variance term will become equal to the variance 
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of the noise, which may be significant. The model becomes very sensitive to the data 
distribution (high variance), a process typically referred to as overfitting. 

This relates to the complexity as follows: Models with too few parameters are in
accurate because of a large bias (not enough flexibility) while models with too many 
parameters are inaccurate because of a large variance (too much sensitivity to the 
data). Thus identifying the best model requires identifying the proper model com
plexity (number of parameters). 

The complexity of the model is thus controlled by a set of hyperparameters. For 
example, with rational functions this could be the degree of the nominator and de
nominator monomials, with Kriging models the correlation/regression functions and 
associated parameters, with ANN the number of units per hidden layer, and with SVM 
the kernel function, the regularization constant y, and the kernel parameters (e.g., the 
spread a in the case of an RBF kernel). 

Classically, this is done based on expert domain knowledge (e.g., setting the Krig
ing trend function) or through a trial-and-error procedure (see for example [167,168]). 
However, in essence this is an optimization problem in the space of possible models. 
Thus, a better approach is to use an optimization algorithm guided by a performance 
metric (e.g., external validation set, leave-one-out error, an approximation of the pos
terior P(6, M\data) such as AIC, etc.). In this way a successive set of approximation 
models are generated that converge towards a local minimum of the optimization land
scape, as determined by the performance metric. An advanced example in this respect 
is given in [169]. The challenge here is to converge to a good optimum, since the land
scape can be expected to be highly multi-modal, deceptive and contain dependencies 
between variables (epistasis). This makes the choice of the performance metric crucial, 
leading us to the well known problem of model selection and accurate generalization 
estimation. This is discussed in the next section. 

Note, though, that in the context of this work the hyperparameter optimization 
problem is more difficult than is typically the case in machine learning. Since data 
points are costly, the use of sequential design is unavoidable (cfr. section 3.6). This 
implies that the data distribution (from which models must be constructed) is not con
stant, and consequently that the hyperparameter optimization surface is dynamic in
stead of static (as is often assumed). These points will be revisited in section 4.5.4.6 
and chapter 7. 

3.7.3 Model selection 

The most crucial aspect of searching through the space of possible models is select
ing an accurate criteria to guide this search. In his book The Symmetric Eigenvalue 
Problem the mathematician B. N. Parlett remarks "There is little profit in approxima
tions which are good but not known to be goocT\ This is the classical model selection 
problem. 
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Many model selection criteria have been developed: empirical methods based on 
resampling (e.g., cross validation, leave-one-out, bootstrapping) [170], information 
theoretic methods based on Bayesian statistics (e.g., AIC) [127, 171—177], or metrics 
with their roots in Statistical Learning Theory (e.g., VC-dimension [178—180]). 

Again, each metric has its strengths and drawbacks. By far the most popular are 
data-based empirical methods [181—184] since these are easiest to implement and apply 
generically. However, being data-based they can be misleading if data is sparse of the 
distribution sub-optimal (e.g., clustered) [9]. Another disadvantage is that they are 
generally computationally expensive to use since they require retraining the model 
multiple times. However, this cost can be alleviated in some model types through the 
use of mathematical shortcuts. See for example the discussion on linear regression 
in [8]. 

In general the choice of model selection metric depends completely on the charac
teristics the domain expert would like to see in the model. This can include: 

• accuracy 

• smoothness 

• bounded output range 

• low complexity 

• etc. 

However, mapping domain expert requirements onto concrete model selection criteria 
is not as obvious as may seem at first. This is discussed in depth in chapter 8. A wide 
range of references are available that discuss and compare different model selection 
criteria [11, 170, 171, 181, 185—191]. Another good resource is the collection of links 
at http : //www . modelselect ion . org/. 

3.7.4 Hierarchical modeling and Ensembles 

Often the systems to model are highly non-linear and may contain discontinuities. 
Trying to capture the full behavior of the system in a single, global model may prove 
to be too difficult. There are different ways this can be dealt with through the use of 
hierarchical modeling6 . 

3.7.4.1 System level decomposition 

The first solution is a domain specific one. If the problem to be modeled is sufficiently 
modular it can be decomposed into smaller components and each modeled separately. 

6This should not be confused with multilevel modeling which is a generalization of linear and generalized 
linear modeling in which regression coefficients themselves are given a model, whose parameters arc also 
estimated from the data [192,193]. 
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A different modeling setup can be used for each component and once generated all 
models can be chained together to approximate the full system. Though care must be 
taken to decompose the system in such a way that the error and uncertainty propagation 
through the model network is kept under control. 

3.7.4.2 Input space level decomposition 

An alternative approach of decomposing the modeling problem is by using domain 
knowledge (or screening techniques if little knowledge is available) to group sets of 
related input variables together. Variables may be grouped in a hierarchical or non-
hierarchical manner. This line of work can be traced back to the rigorous work by 
Kron and his work on the development of diakoptics [ 194]. Diakoptics is a method 
for finding the solution to large scale systems in a piecewise fashion [195]. The word 
diakoptics is derived the Greek word kopto which means to tear and dia which can be 
interpreted as system [195]. Hence diakoptics is the method of system tearing. 

This kind of decomposition is based on the assumptions of effect sparsity (not all 
factors are relevant) [196]. Each subgroup of variables is analyzed independently and 
the data combined to form the final surrogate model. These methods assume that from 
the total set of design variables for the system, one can subdivide the set into disjoint 
subgroups and that the interactions between individual design variables in disjoint sub
groups are of negligible importance to the overall variability to the response. More 
information about these techniques can be found in [197]. 

Alternatively, instead of grouping different variables together, one can retain all 
variables but apply a divide-and-conquer strategy on the input space. The input space 
is partitioned recursively until a model with acceptable performance can be built on 
each partition. The overall surrogate model then consists of a tessellation of simpler 
sub-models. The advantage of this approach is that the model for each partition is only 
as complex as the data needs it to be. For example, in the case of polynomial models, 
plateaus will be modeled by simple one degree polynomials while more nonlinear par
titions will be fitted with higher degree polynomials. While intuitively very attractive 
there are a number difficulties. The first is designing a good partitioning algorithm. 
For rectangular partitions this can be done based on a clustering analysis of the data 
or based on derived gradient information. Alternatively, model uncertainty informa
tion can be used to delineate partitions. However, for non-rectangular partitions things 
rapidly become more complex. Another problem is that the number (and size) of par
titions grows exponentially with the dimensionality of the input space. This makes 
that constructing separate models for each partition (including finding a good model 
complexity) quickly becomes computationally prohibitive for reasonable problems. Fi
nally there is the problem of ensuring continuity at partition boundaries, meaning some 
form of overlap must be defined. These problems aside, there have been a number of 
successful applications [198-201]. 
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3.7.4.3 Ensembles 

Ensemble methods are closely related to divide-and-conquer modeling and have been 
very popular within the neural network literature (cfr. committee networks) [202]. An 
ensemble is simply a group of more than one model whose predictions are combined 
such that the group acts as a single model. Under certain conditions it can be proven 
that by combining models in this way a superior prediction may be achieved [203,204]. 
There is a huge amount of literature available on ensemble methods [205—217]. 

The many different types of ensembles are distinguished on the basis of how group 
members are constructed and combined. Each ensemble member may be of the same 
type and complexity but trained on different portions of the data. This can be useful 
when combined with cross-validation in order to estimate the prediction uncertainty. 
On the other hand, the ensemble members may be heterogeneous but share the same 
data, again useful for prediction variance estimation. In general, the difficulty is choos
ing ensemble members in such a way that they are optimally complementary (the more 
the ensemble members are aligned, the less information combining them gives). A 
popular algorithm that helps achieve this is Negative Correlation Learning [207]. 

Besides the composition of the ensemble, a problem is also how to combine the dif
ferent models. This may be done in a hierarchical manner, through weighted averaging, 
voting, or any other aggregation function. While ensembles have seen many success
ful uses, and are increasingly being used in optimization [18, 87], the main problem 
with their application is that they introduce many new parameters, design choices, and 
increase the computational cost of the modeling. 

3.7.5 Local or lazy learning 

A completely different way of dealing with the data approximation problem is through 
the use of local learning or lazy learning, excellent reviews of which are given in 
[218—220]. Traditional approximation methods are constructed based on all available 
data in a training phase. Once the model parameters are determined the model can 
then be used for prediction and the training data is no longer needed. These global 
models stand in contrast to local approximation methods like nearest neighbor, Lo
cally Weighted Regression (LWR) or Moving Least Squares [221]. Local regression 
is an old method for smoothing data and has its origins in the graduation of mortality 
data and the smoothing of time series in the late 19th / early 20th century. 

Local models only construct a model once a prediction for an unknown point is 
requested, hence the term lazy. Given an unknown point, a local learner will determine 
the relevant neighbourhood for that point and construct a model for that neighborhood 
only. Usually the neighborhood points are weighted with respect to the distance to the 
query points7 . 

7Readers may note the relationship with kernel methods like Kriging, SVM, and RBF. 
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Local methods differ in: (1) the neighbourhood size (bandwidth), (2) the weight 
assignment function, (3) the parametric model family that is fitted locally, and (4) the 
assumptions about the distribution of the response. Each of these may vary with the do
main or change adaptively. A classic method is LOESS, or LOWESS (locally weighted 
scatterplot smoothing) [219]: At each point in the data set a low-degree polynomial is 
fitted to nearby data points. The polynomial is fitted using weighted least squares, 
giving more weight to points near the query point. 

A new, more powerful local learning method that was developed recently is Lo
cally Weighted Projection Regression (LWPR) [220,222] . At its core, LWPR uses 
locally linear models, spanned by a small number of univariate regressions in selected 
directions in the input space. According to the authors it learns rapidly with second 
order learning methods based on incremental training (adaptive sampling), has a com
putational complexity that is linear in the number of inputs, and can deal with a large 
number of (possibly redundant & irrelevant) inputs. 

Local methods are very useful in the case of large data sets and they scale well 
with the dimensionality. They also relieve the modeller from having to decide upfront 
about a global model structure. Additionally, being local makes them robust with re
spect to heterogeneous response behaviors. Predictions in a relatively flat area of the 
response are not impacted by strong nonlinearities in a different part of the response 
(in contrast to global models like polynomials). They are, however, slower to use since 
the local model must be constructed for each prediction. This can be alleviated some
what through an efficient implementation (e.g., pre-calculate neighbourhoods where 
possible) and if the model structure is kept relatively simple. Another disadvantage 
with respect to global models is that it is hard to write a closed form expression of the 
model. Transferring the model usually means transferring the data and the procedure 
to generate the model. 

3.7.6 Knowledge based modeling 

A last way in 'which the modeling process may be enhanced is through the incorpora
tion of knowledge. Often some information is available about the expected response 
behavior (e.g., monotonicity [223]) and such information should be included in the 
model. As discussed in section 2.5, pure data based methods cannot be trusted to ex
trapolate or interpolate in regions where data is missing or very sparse. Unless the cho
sen model structure is known to be representative of the true system of course. There 
are different ways existing process knowledge (in the form of one or more analytical 
formulas) can be incorporated into surrogate models (we ignore MOR approaches as 
discussed in section 2.5.1). The first is by using a data based approximation method 
that is directly inspired by the application domain. An example is the Vector Fitting 
(VF) technique in use in EM applications [224]. A second way is by incorporating the 
knowledge into the structure of a generic fitting method. With Kriging models this may 
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be done through the use of a domain-inspired regression function. In neural networks 
this may be done by embedding custom transfer functions or using Knowledge Based 
Neural Networks [24,225]. 

A different, popular, way of including domain specific knowledge in a surrogate 
model is through the use of (space) mapping methods [76]. The core idea here is to 
take the available knowledge as a starting point and use generic approximators to map 
between the true system and the approximate knowledge. There arc three main types 
of mapping methods which we discuss briefly below. 

Let x and y be vectors of model inputs and outputs. Let the existing knowledge be 
represented by function y = fempix), which can be either empirical functions or circuit 
formula. Let the black-box approximation method be represented by y = fix). The 
problem is then to determine how the two parts femp(x) and fix) should interact such 
that their combination results in superior accuracy than if each were used in isolation. 
There are different ways to accomplish this. 

The first is through Difference Mapping (DM) [74]. In this case f(x) will be 
trained to learn the difference between the true data y and the approximation y given 
by /emp(x). Thus the true output y is written as 

y = y + Ay = femp (x) + f(x) (3.14) 

This method is expected to give good results when the difference has a simpler 
input-output relationship as a function of the inputs than the target data. Note that 
the idea here is similar to the fundamental structure of Kriging and Gaussian Process 
models. One could interpret those models as a base model that is fitted to the data (the 
regression) and is then corrected by the correlation function. 

A second method is Output Mapping (OM), Prior Knowledge Input (PKI) [74], or 
Manifold Mapping [226,227]. In this case the outputs of the existing empirical model 
y are used as inputs to the black-box model, in addition to the original problem inputs 
x. Thus the black-box model is trained on (x ' ,y) with x' = (x,y) , a simpler input-
output relationship as compared to the original problem, which requires less training 
data [228]. The target data is now predicted as 

y=fix')=fixffemp{x)) (3.15) 

The third mapping function is Input mapping (IM) or Space Mapping (SM) [229] 
and is probably the best known. IM intelligently links companion "coarse" (ideal, 
fast, or low fidelity) and "fine" (accurate, practical, or high-fidelity) models of differ
ent complexities, e.g., empirical circuit-theory based simulations and full-wave EM 
simulations, to accelerate iterative design optimization. Through IM optimization, the 
surrogates of the fine models are iterativcly refined to achieve the accuracy of EM 
simulations with the speed of circuit-theory based simulations. 

We adopt the notation of [229]. Let vectors xc and Xf represent the design param
eters of the coarse and fine models, respectively. Let Rc(xc) and Rj(xf) represent the 
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corresponding responses of the coarse and fine models, respectively. The response of 
the coarse model Rc is much faster to calculate, but less accurate than the response of 
the fine model R/. The aim of space mapping optimization is to find an approximate 
mapping P from the fine model parameter space x/ to the coarse model parameter space 
x c , i.e., x c = P(xf) such that Rc(P(xf)) P=S Rf(x/) [76]. P is usually implemented using 
one of the available black-box fitting methods (e.g., ANNs as done in [230]). Thus the 
final output is calculated as 

y = Rc(xc) =Rc(P(xf)) =Rc(J(x)) (3.16) 

In particular space-mapped neuromodeling has demonstrated its efficiency by passive 
modeling or small-signal device modeling, achieving fast and accurate models for de
vices such as bends, high temperature superconductor filters, embedded passives in 
multilayer printed circuits, and other linear components [231]. 

In sum, a wide range of knowledge incorporation methods have been developed 
and these should always be preferred over pure black-box methods. The disadvantage 
is that these approaches only work on problems where the underlying process is at 
least partially known and knowledge can be encapsulated into standalone rules and/or 
equations. 

3.7.7 Hybrid modeling 

Note that the methods described in the preceding subsections should not be seen as in
dependent algorithms but more as a continuous scale where one morphs into the other. 
There are many variations on the main points given above and all can be combined in 
endless ways. For example [43] and others [44] discusses a surrogate modeling strat
egy where models are built on a mixture of low-fidelity and high-fidelity simulations 
which does not fit directly in one of the previous categories. This set of methods are 
typically referred to as multi-level or multi-fidelity approimations. 

In the limit one can visualize a web linking different model types, divide-and-
conquer schemes, and space mapping methods. This web may take the form of a 
complex, hierarchical ensemble, or even a neural network where each neuron is in itself 
a full blown model. While at it, why not evolve the whole web using an evolutionary 
algorithm to determine the optimal topology? 

While interesting from a research perspective in general the downside of more eso
teric hybrid methods is that they arc very computationally expensive and demand a lot 
from the designer with respect to implementation and tuning complexity. Furthermore 
it still remains to be seen whether the performance of an ultra adaptive, hybrid approach 
performs marginally better than one properly applied classical statistical model. Also, 
as [4] states, "... it must also be remembered that even the most complex approaches are 
still subject to the "no free lunch " theorems. 
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3.8 Other surrogate modeling choices 
So far we have concentrated on the two major aspects of applying surrogate modeling: 
data collection and modeling strategy. However, besides these surrogate modeling also 
involves making informed choices with respect to: feature selection, data pre/post
processing, termination criteria, and model validation. In particular, feature selection 
is gaining increasing importance as the number of dimensions considered by engineers 
continues to increase. One of the biggest challenges currently facing surrogate mod
eling researchers is how to identify unimportant or correlated variables when data is 
scarce (simulations are costly) and/or when samples cannot be chosen freely (e.g., due 
to physical constraints). 

More of a practical consideration is the sample evaluation strategy to use. When 
constructing an approximation model for an expensive simulation engine the largest 
computational bottleneck is performing the necessary simulations. A natural step is 
to harness the power of a grid, cluster, or cloud to reduce this cost. Integration with a 
distributed system can occur on multiple levels, this will be discussed further in chapter 
6. 

3.9 Towards adaptive integration 

From the previous sections it should be clear that there is a wide variety of interde
pendent problems that one encounters when generating an approximation model. The 
optimal solution for each case depending on the problem characteristics: input/output 
dimensionality, amount of data that can be collected, application constraints, available 
process knowledge, etc. A huge amount of comparative studies have been conducted 
that try to extract general rules and guidelines with regard to modeling and sampling 
strategy choices [2 ,3 , 10—21]. However, given the complexity of the problem, care 
must be taken when interpreting such rankings. The goal of this thesis is to explore 
how one can go beyond comparisons on individual sub-problems and work towards 
an adaptive integration of sampling, model generation, and simulator scheduling while 
still allowing for problem specific customizations. 

The motivation for this goal is two-fold. First, given the interdependence of the 
different sub-problems, an adaptive integration of modeling and sampling strategies 
makes for a more optimal use of available computational resources (a good discussion 
is given in [9]). The number of simulations can be reduced and the accuracy of the 
models improved. Similar sentiments have been expressed by other authors [9,22—25]. 
The second motivation has to do with easing the manual process of generating an 
accurate surrogate model. Very few domain experts have the time and expertise to 
deal with the intricacies of different sampling and modeling techniques. Even if they 
did, readily available software implementations are typically lacking, and papers do 
not always include enough detail to allow for a custom implementation. Their primary 
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concern is obtaining an accurate replacement metamodel for their problem as fast as 
possible and with minimal overhead. 

At the same time any integration effort should take into account that every dis
cipline or engineer has his preferred technique and approximation method and there 
is no such thing as a "one size fits all"8 . Thus any integration should allow for easy 
switching between methods and should be naturally extensible. 

3.10 Conclusion 

In chapter 2 we narrowed the scope of the dissertation and explained the basic ideas 
and evolutions behind surrogate modeling. In this chapter, starting from the domain 
of surrogate modeling, we explored the different sub-problems and challenges that 
arise as part of applying surrogate methods: data collection strategy, experimental de
sign, model parameter optimization, etc. The chapter also discussed how there are 
few objective rules as to what particular combination of ingredients works for which 
problems. With this chapter all the necessary terms and concepts have been introduced. 
This foundation can now be built upon to explore the ways the different surrogate mod
eling ingredients can be incorporated in an adaptive, reusable software framework. 

8It is true that general purpose approximators exist that work well across many applications. Neural 
networks being the prime example. Every popular approximation method can be theoretically proven to have 
universal approximation properties. However, in a practical sense large differences between methods exist 
with regard to interprctability, sensitivity to data distribution, extrapolation capability, ease of uncertainty 
estimation, etc. 
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The SUMO Toolbox 

Civilization advances by extending the number of important operations 
which we can perform without thinking about them 

— Alfred North Whitehead 

4.1 Introduction 

With the start of this chapter the foundations and characteristics of surrogate modeling 
should be clear as well as the challenges this leaves for the domain expert. The goal 
of the current chapter is to take the discussions from the previous chapter and mould 
them into a concrete, usable, framework in software. Recall from the introductory 
chapter that an important motivation for this work was to lower the barrier of entry for 
domain experts to apply advanced surrogate modeling methods. A readily available 
software tool would greatly facilitate this. Given the wide range of available methods 
and problems this is no trivial task. Perhaps a good illustrative quote is one given in 
the PhD dissertation of Mcckcshcimcr [5] who, in the "future work" section of his 
concluding chapter, notes: 

Developing a framework for metamodel-based design is a multidisciplinary 
task in itself encompassing many areas of research in domains ranging 
from mathematical and statistical modeling and simulation to information 
technology and systems engineering. The challenge today is to bring these 
research elements together to exploit their strengths and identify new ex
citing research opportunities for the future. 
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This chapter will present such an integrated framework for metamodel-based design 
and attempt to balance the many trade-offs involved. The framework in question is the 
Surrogate Model ing (SUMO) Matlab Toolbox. The SUMO Toolbox was developed as 
a common research platform for testing new ideas and methods and it is the platform 
which is used for all the tests and applications discussed in this dissertation. This 
chapter shall introduce the toolbox, its history, the philosophy underlying its design, 
and its software architecture. 

Since the topic of this chapter mainly revolves around software it is very prone to 
quickly becoming dated. While we will focus on the concepts and ideas, it is unavoid
able that some aspects will be obsoleted as the software is improved and new versions 
are released. The most up to date source of information will always be the website 
which is found at h t t p .- / / w w w . s u m o w i k i . i n t e c . u g e n t . b e . 

4.2 Background 

4.2.1 History and Motivation 

In 2004 research within the Computational Modeling and Simulation (COMS) research 
group at the University of Antwerp concentrated on developing efficient, adaptive and 
accurate algorithms for polynomial and rational modeling of electro-magnetic data. 
On the multivariate front this work resulted in a set of Matlab scripts that were used 
as a testing ground for new ideas and techniques. Research progressed, and with time 
(early 2005) these scripts were re-worked and refactored into one coherent Matlab 
toolbox, tentatively named the Multivariate MetaModeling (M3) Toolbox. The first 
public release (v2.0) of the M3 Toolbox occurred in November 2006. Development 
continued but mid 2007 the M3 Toolbox project at the University of Antwerp was 
discontinued and made available as open source software. The key project members 
moved to Ghent University in 2007 and there the old code base was resurrected and 
re-cbristend as the SUMO Toolbox, developed by the members of the SUMO Lab, 
at the Integrated Broadband Communications Networks (IBCN) research group. The 
first public release of the SUMO Toolbox (v5.0) occurred in April 2008. At the time of 
writing, the current version is 7.0. The motivation for the development of the toolbox 
has its roots in the electronics domain and a number of factors influenced its instigation. 

Firstly there was the observation that, traditionally, surrogate models were cre
ated through a manual process where data collection occurred in a one-shot manner 
according to a straightforward experimental design (usually a factorial). In contrast, 
research [73] showed that a more intelligent, iterative approach to data collection and 
model building was more cost effective, particularly since it allowed a form of au
tomation. Some of these early ideas had already found their way into commercial tools 
(e.g., Agilent Advanced Design System (ADS)) but there were still many unexploited 
avenues of research with room for increased robustness, automation, and modeling 
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efficiency. 
Secondly, given the wide range of choices and options in the surrogate modeling 

process (cfr. chapter 3) there was a pragmatic need for a common software framework 
that allowed different ideas and techniques to be easily implemented, tested, and ap
plied to different problems. Given the wide variety of options and methods, such a 
tool needed to be modular and maximally enable code-re-use and rapid development. 
Driven by these motivations, the design of the SUMO Toolbox started by taking a step 
back and formulating the surrogate modeling problem in its most general form. Ini
tially the scope of the project was limited to rational modeling of electromagnetic data. 
However, decoupling the surrogate modeling problem from the concrete application 
allowed for a birds-eye view of the modeling process and the implementation of a very 
flexible and adaptable software stack. As research continued it quickly became clear 
that the resulting framework was applicable far outside the electronics domain since 
the essential data fitting problem was the same across many fields. 

4.2.2 Design goals 

The S U M O Toolbox was designed with a number of goals in mind: 

• A flexible tool that integrates different modeling methods and does not tie the 
user down to one particular set of problems. Reliance on domain specific fea
tures should be avoided. 

• At the same time keeping in mind that there is no such thing as a 'one-size-fits-
all ' . Different problems need to be modeled differently and require different a 
priori process knowledge. Therefore the software should be modular and easily 
extensible to new (specialized) methods. 

• The focus should be on adaptivity, i.e., relieving the burden on the domain expert 
as much as possible. Given a simulation model, the software should produce an 
accurate surrogate model with minimal user interaction. This also includes easily 
integrating with the existing design environment. 

• Engineers or domain experts do not tend to trust a black-box system that gen
erates models but is unclear about the reasons why a particular model should 
be preferred or trusted. Therefore an important design goal was that the expert 
user should be able to have full manual control over the modeling process if nec
essary. In addition the toolbox should support fine grain logging and profiling 
capabilities so its modeling and sampling decisions can be retraced. 

Studying these requirements it is obvious that there exist some mutual contradictions. 
It is impossible to maximize application generality and minimize model accuracy si
multaneously. The more knowledge and data you posses about a system, the faster and 
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more accurately you can model it but the less generic your approach will be. We shall 
revisit this point in section 4.4. 

Given this design philosophy, the toolbox can cater to both the researchers working 
on novel surrogate modeling techniques and to the engineers who need the surrogate 
model as part of their design process. For the former, the toolbox provides a common 
platform on which to deploy, test, and compare new modeling algorithms and sampling 
techniques. For the latter, the software functions as a highly configurable and flexible 
component to which surrogate model construction can be delegated, easing the burden 
of the user and enhancing productivity. 

4.3 Control flow 

A conceptual way of linking the different surrogate modeling components (cfr. section 
3.9) together in a control flow is illustrated by the flowchart in figure 4 .1 . 

I 
Generate candidate 

Sample points 

T 
Perform Simulations 

T 
Generate / update 

models Assess models 

1 
No 

Yes 

Return final model 

Figure 4.1: General flowchart for adaptive global surrogate modeling 

There are two main parts to figure 4 .1 : an outer sampling loop and an inner mod
eling loop. Based on a set of simulated data points, the inner loop will generate and 
improve approximation models until no further accuracy improvements can be made. 
If the resulting model is acceptable the control flow terminates, else a new set of data 
points is determined, and the modeling process resumed. 
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Of course, as-is, figure 4.1 has little practical use since it is very vague. Like the 
Expectation-Maximization algorithm [232] it is really a meta-algorithm that can have 
many different concrete instantiations. Unsurprisingly, a simple review of the litera
ture learns that it is indeed this control flow that forms the common denominator across 
different publications on (global) surrogate modeling. The difference between imple
mentations being that each starts from a specific method (e.g., Kriging) or problem 
(e.g., electromagnetic modeling) in order to arrive at a concrete, specific instantiation 
of figure 4 .1 . For example [22] and [23] essentially employ the same control flow, 
except highly customized towards Kriging models and Bayesian models respectively. 
There are, of course, also a number of more integrated, generalized surrogate mod
eling stacks, most being geared towards SBO. See for example [136,233] and the 
overviews given in [2 ,4 ,44 ] . Considering the focus on global models, more relevant 
works are [22,25] , the Efficient Robust Concept Exploration Method (E-CREM) de
veloped by Lin [9], and the Automatic Model Generation method developed by Zhang 
et. al. [234]. 

Instead of deriving figure 4.1 from a concrete method or application (bottom-up) 
the SUMO Toolbox was driven by an explicit top-down approach: identifying the prob
lems, available techniques, applications, and actors in the modeling process and then 
determining how they can be brought together in a flexible, extensible manner, using 
the generic control flow in figure 4.1 as a backbone. 

4.4 Software Architecture 

The design and implementation problem that arises from the design goals listed in 
section 4.2.2 is far from trivial since they impose contradictory requirements on the 
software architecture. Trying to merge all scenarios into a monolithic framework is not 
an option since it would require too many compromises to be useful. Instead we adopt 
the microkernel design pattern which is commonly associated with operating systems 
research [235]: 

The Microkernel architectural pattern applies to software systems that 
must be able to adapt to changing system requirements. It separates a 
minimal functional core from extended functionality and customer-specific 
parts. The microkernel also serves as a socket for plugging in these exten
sions and coordinating their collaboration. 

The idea is to wrap the core controlling algorithms into a flexible microkernel and 
moving all extra (possibly problem specific) functionality into separate plugins. The 
communication with these plugins happens through well defined Application Program
mer Interfaces (APIs). If the APIs are defined cleanly, with the right level of abstrac
tion, this allows for a very flexible software architecture that can be molded to fit a 
wide range of environments. The disadvantage of a microkernel approach, though, is 
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that the modularity adds some extra communication overhead over the case where all 
algorithms are tightly coupled. In operating systems this overhead can become prob
lematic. However, given the topic of this dissertation we consider this overhead to be 
negligible, especially compared to the simulation cost. The benefits it incurs (flexibil
ity, customization) greatly outweigh the disadvantages. 

Another important motivation for selecting a microkernel-type software architec
ture is because we wish to maximize code and software reuse. Software reuse is 
the process of creating software systems from existing software rather than building 
software systems from scratch. This simple yet powerful vision was introduced in 
1968 [236] and the benefits that result from it are obvious [237]: 

• reduced effort duplication 

• higher quality components (increased dependability) 

• effective use of specialists 

• accelerated development, resources can be spent on ' the interesting parts ' 

The key to proper software reuse is the appropriate definition of different levels of ab
straction. "It is well known that it is not always advisable to make everything generic 
andparameterisable (over-engineering or gold-plating) as the costs may outweigh the 
benefits due to increased complexity. On the other hand we do not only abstract to 
allow reuse but to facilitate understandability by reducing complexity" [238]. An im
portant part of the work involved in this dissertation was trying to find a good balance 
between these trade-offs. 

Eventually this resulted in the design of a plugin-based infrastructure for the SUMO 
Toolbox using standard object oriented design patterns and fully exploiting polymor
phism. This will be discussed in detail in section 4.5. An illustration of the plugin-
based infrastructure is given in figure 4.2. The figure shows how different plugins can 
be composed into various configurations or replaced by custom, more problem spe
cific plugins. In this way many different concrete instantiations of the control flow in 
figure 4.4 can be realized by selecting the appropriate subset of plugins. The plugins 
currently available include: 

• Data sources: native executable or shell script, Java class, Matlab script, user 
defined 

• Model types: interpolation (linear, cubic,natural neighbor), polynomials, rational 
functions, Multi Layer Perceptrons, RBF models, RBF Neural Networks, Sup
port Vector Machines (e-SVM,v-SVM,LS-SVM), ordinary kriging, blind krig
ing, GP models, smoothing splines, hybrid (ensembles), user defined 

• Model parameter (hyperparameter) optimization algorithms: hill climbing, BFGS, 
Pattern Search, GA, PSO, DIRECT, simulated annealing, NSGA-II, Differential 
Evolution, EGO, Sequential Quadratic Programming (SQP), user defined 
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Figure 4.2: SUMO Toolbox Plugins. Based around a small coordinating 'kernel' many plugins 
are available that can be composed into various configurations. 

• Initial experimental design: random, Central Composite, Box-Behnken, (Opti
mal) Latin Hypercube, Voronoi, full factorial, user defined DOE 

• Adaptive sample selection: error-based, density-based, gradient based, LOLA 
[239], random, optimization driven infill sampling1 , Mode-Pursuing Sampling 
(MPS) [240], and various hybrids 

• Model selection: cross validation, validation set, Leave-one-out, AIC, Linear 
Reference Model (LRM), model difference, user defined 

Some of these plugins are implementations of existing algorithms (e.g., MPS [240]) 
while others are the result of our own research (e.g., L O L A [239], LRM [241]). To
gether the different available plugins already cover a very wide spectrum of techniques 
and problems. If additional, highly problem specific plugins are needed, these can be 
incorporated in a straightforward way as is described in the following sections. 

'This is an extended version of the EGO algorithm originally developed by Jones et. al. [89]. It includes 
extensions discussed by [90] and provides a configurable algorithm, supporting constraints, that balances 
global sampling (exploration) and optimization driven sampling (exploitation). More details are given in 
section 4.6. 
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4.5 Code organization 

From a high level point of view the SUMO Toolbox consists of 4 major subsystems, 
these are illustrated in figure 4 .3 . The central entity is the control system, it imple-

Sample 
Selection 

Subsystem 

Sample 
Evaluation 
Subsystem ] 'li 

Simulation code 

Figure 4.3: The different subsystems that make up the SUMO Toolbox 

ments the main control flow and coordinates between the other subsystems. The mod
eling subsystem is responsible for the generation of approximation models, the sample 
selection subsystem for the identification of interesting simulation points, and the sam
ple evaluation subsystem is responsible for ensuring the selected points get simulated 
efficiently. All subsystems are implemented in Matlab, except the sample evaluation 
subsystem which is implemented in Java (to allow for threading and easy integration 
with distributed resources). Since Matlab has a Java Virtual Machine built into its 
framework, interaction between both languages was trivial to achieve. 

Matlab was chosen as the base platform for a number of reasons: 

• the large number of toolboxes and implementations of standard and advanced 
numerical routines it provides 

• complete and up to date documentation of said toolboxes and routines 

• operating system independence 

• the seamless integration with Java 

• the large surrounding user community 

A disadvantage of using Matlab, though, is that the toolbox is locked to a proprietary 
platform (with associated license fees) over which we have no control. This as opposed 
to the many free software alternatives which provide more freedom, flexibility, and 
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security in the long term. However, the advantages listed above, and given that Matlab 
is the de facto standard platform for scientific computing tipped the decision in favor 
of using Matlab. 

The remaining subsections of this section will discuss each major subsystem in de
tail as well as a number of other smaller, supporting subsystems. This part of the thesis 
is the most prone to becoming obsolete. Therefore we shall concentrate on the high 
level structure of the different components, rather than focus on the implementation 
and purpose of every single class. Thus the class- and sequence diagrams given in the 
remainder of this section should not be taken as a perfect bijective mapping of the un
derlying source code. Some details and utility classes have been omitted for the sake 
of clarity. 

4.5.1 Control subsystem 

We start with the components that are responsible for bootstrapping the toolbox and 
executing the control flow. Together they form the control subsystem that drives the ex
ecution of the toolbox. It is instructive to go over the main flow of events as illustrated 
in figure 4.4. 

Simulation code 

Figure 4.4: SUMO Toolbox Control Flow 

After some initialization and bootstrapping, the control subsystem requests the 
sample selection subsystem to generate an initial DoE in step (1). The DoE is gener
ated and returned to the control code in step (2) which then schedules it for evaluation 
in step (3). Evaluation of the simulator is handled by the sample evaluation subsystem 
which returns the evaluated points to the control code when finished (steps 4 to 6). 
Data is now available to start the modeling so the control code instructs the modeling 
code to start generating models for the given points (step 7). Once the modelbuild-

Modeling 
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Subsystem 

Sample 
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ing process has been completed, control passes back to the control subsystem (step 8) 
which decides if the results are good enough to terminate the model building process. 
If not, the sample selection subsystem is again triggered and the whole process starts 
again. 

This description of events is already more concrete than the flowchart in figure 
4.1 but still does not refer to the low level classes that are actually involved in the 
implementation. That is illustrated by the sequence diagram in figure 4.5 which works 
as follows: 

-9° SUMODriver 

user 
qo(..) 

SUMQDrivert ) 
•n 

for each defined run I 

sumo SUMO 

ru riLoopp 
*P r 

Initial deslon 1 handlelnftlalSamples(state) 

while I 
[targets not reached] 

modellnqLoop 
ru n Modeli ngLooptetate) 

sampllnoLoop 
runSampllngLcx>p(5tate) 

Figure 4.5: Sequence diagram of the bootstrapping and control subsystem 

The user starts the toolbox by executing the Matlab go script. This script performs 
some basic sanity checking (command line arguments, is Java enabled, is the Matlab 
version supported, etc.) and then calls the SUMODriver script with the name of the 
X M L toolbox configuration file (cfr. section 4.5.5). The task of SUMODriver is then 
to parse the X M L file and execute each Run defined therein. 

A Run represents one surrogate modeling experiment, i.e., the generation of a 
model for a particular problem with a particular configuration. The toolbox config
uration file may contain multiple runs which are executed sequentially. This is useful 
for setting up benchmarking tests. Each Run may freely define the problem to model, 
and components to use in the model building process. 

Thus, for each run, the SUMODriver script takes care of reading the XML file, 
splitting it into pieces and ensuring all necessary objects are instantiated with the rele
vant X M L fragment that contains the configuration options for each object. The most 
important of these objects is an instance of the SUMO class. The SUMO class forms 
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the core of the SUMO Toolbox. Once instantiated, its runLoop method is triggered by 
SUMODriver, which then starts the familiar control flow from figures 4.1 and 4.4. 

We now consider each of the subsystems involved in this control flow in turn. Start
ing with the sample selection subsystem. 

4.5.2 Sample selection subsystem 

The sample selection subsystem encompasses two parts: the InitialDesign class hier
archy (for static DoE) and the SampleSelector hierarchy (for sequential designs). We 
discuss each of these in turn. 

4.5.2.1 Initial Designs 

As the name implies the initial designs are responsible for generating the initial DoE 
that is needed to seed the sequential design strategy (XQ from section 3.2). The gen
eration and evaluation of the initial design is handled by the SUMO class in its han-
dlelnitialSamples() method. The implementation hierarchy is very simple (see figure 
4.6). There is a single base class InitialDesign with one abstract method [samples] = 
generate(). Subclasses should override this method and return a set of points in the 
input space that should be used as the initial experimental design. 

W^^mmP^.^J'''-T :"5?WPwil!HP 

****?•***•V . l .nw 

Figure 4.6: Initial Design hierarchy 

Of the different subclasses, the most important is probably LatinHypercubeDesign. 
It implements an optimization algorithm by Ye et. al. [242] to generate points on Latin 
hypercube. Unfortunately, generating a good Latin hypercube design is a very difficult 
and computationally expensive task with the results often being quite poor [242—244]. 
For this reason the implementation in the toolbox will first attempt to download a 
known optimal Latin hypercube design from the internet2 . Only if a design with the 
requested dimensionality and number of points is not found will the toolbox fallback 
to generating one itself. 

2http://www.spacefillingdesigns.nl 

http://www.spacefillingdesigns.nl
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4.5.2.2 Sequential Designs 

Once an initial set of data points is available it is the task of the sample selection al
gorithm to incrementally extend this set with maximally informative new data points. 
The key question of course is, what is maximally informative? As already discussed 
in section 3.6.2 many diverse criteria can be used to decide whether a particular loca
tion in the input space is worth sampling or not. Given this diversity and the natural 
requirement to use different criteria in concert, possibly even dynamically, this results 
in a complex set of use cases. 

The main abstraction is the SampleSelector class, it contains one method which 
subclasses can override: [newSamples, priorities] = selectSamples(state). This is il
lustrated in figure 4.7. Given a state with some contextual configuration (problem 

wm&c "•^rmmm 

Figure 4.7: Sample Selection hierarchy 

dimensionality, best models built so far, number of points to return, etc.) the imple
menting method should return a new set of potential sample locations. Associated with 
the list of points is a corresponding list of priorities. The higher the priority the more 
important the sample location is deemed (see chapter 6). Subclassing SampleSelector 
gives the most possible freedom concerning the algorithm used. However, it also in
volves the most work. Thus two noteworthy subclasses are defined that make the task 
of implementing a new sampling algorithm somewhat easier and facilitate code reuse. 

The first is the OptimizeCriterion sample selection subclass whose structure is 
shown in figure 4.8. It essentially combines a generic optimizer with a CandidateR-
anker object. The latter is a criterion that returns a score given one or more candidate 
sample locations. Thus the optimizer simply optimizes the given criterion and returns 
the found optima as a new sample point location. There is one caveat though. Ex
perience showed that the same sample point3 could be returned multiple times across 

3 Deciding whether two points in a continuous domain are the same is actually a tricky problem. Exact 
equality can be checked but intuitively a user would want to specify a tolerance within which points are 
considered identical (similar to the e-tube used in SVM theory). However, while such a spherical range can 
be specified relatively intuitively in ID and 2D. For more than 2 inputs this becomes difficult to impossible 
to understand and thus essentially useless. One way to solve this is by specifying the tolerance in relative 
terms (e.g., relative to the domain which is known to be fixed to [-1 1]). An easier solution, and the one 
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Figure 4.8: The OptimizeCriterion class. An optimizer drives a candidate ranker in order to 
find a promising sample location. One or more fallback criteria may be present to 

ensure the returned points are always unique. 

different sample selection iterations. This happens if the optimizer finds the same opti
mum multiple times and results in a waste of resources (duplicate points are discarded). 
Thus OptimizeCriterion can be configured with one or more fallback CandidateRanker 
objects. If the first candidate ranker is unable to identify any new unique sample points, 
the next fallback criterion is triggered and so on. Ultimately, if none of the CandidateR
anker objects find any new samples, new samples are selected randomly. Alternatively 
one could add mathematical constraints to the optimizer to ensure it does not suggest 
points close, or idenitcal to previous points (e.g., as done in [95]). 

Sometimes the optimization approach can be slow or have difficulty identifying 
good sample locations. There are cases were a more direct one-shot approach is easier, 
faster, and can lead to better sample distributions. This is where the second class, 
PipelineSampleSelector, comes in (figure (4.9)). 

Besides the aheady discussed CandidateRanker class, there are two others in
volved: CandidateGenerator and MergeCriterion. The candidate generator is respon
sible for generating candidate sample locations based on some (configurable) one-shot 
distribution (e.g., a dense grid or voronoi distribution). These potential samples are 
then passed to the candidate ranker components. Each of these assesses the candidate 
points according to a criterion (e.g., space filling-ness, response value, model uncer
tainty, expected improvement, etc.). This results in each candidate point receiving a 
score (higher is better) from each candidate ranker. These scores are then merged by 
the merge criterion in order to come to a final distribution of data points. Different 
implementations of the merging algorithm are possible. Merging may be done based 
on distance (i.e., space filling), on score, on a hybrid distance-score combination, or 

the SUMO Toolbox uses, is to use the manhattan distance instead of the eucliean distance. This effectively 
resulls in a hypercube instead of a sphere. One can then specify the tolerance in function of the minimum of 
the maximum distance in each dimension. 
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Figure 4.9: The PipelineSampleSelector class. The candidate generator generates a set of 
candidate points, these are then ranked by one or more candidate rankers, and then 

filtered by the candidate merger which returns the final set of points. 

based on some other user defined aggregation function. The merging function may 
even be dynamic, giving more weight to a particular candidate ranker depending on 
the modeling progress. For example, initially it is more important to globally map the 
design space, while as the model quality improves, the sampling strategy can shift to 
focusing on the interesting, local features of the domain. 

The PipelineSampleSelector and OptimizeCriterion sample selector classes require 
each criterion to act on exactly the same set of candidates. A criterion is not allowed to 
add new candidates. This makes it possible to combine the scores of multiple candidate 
rankers in a meaningful way. However, this has as a disadvantage that the domain 
considered by each candidate ranker is the same. This domain is determined by the 
candidate generator and optimizer which is shared by all ranker objects. Instead it may 
be interesting to use different optimizers or different candidate generators together. For 
this there is the CombinedSampleSelector class. 

The CombinedSampleSelector allows one to use different SampleSelector objects 
(not candidate rankers!) together (figure 4.10). For example, it allows you to use 
an OptimizeCriterion object that samples the model optima, together with a pipeline 
sample selector object that ensures a space filling coverage. Again a MergeCriterion 
object is used to merge the samples proposed by the different algorithms in an intelli
gent and/or dynamic way. 

4.5.2.3 Extensions 

There three extensions to the sequential design system outlined so far that the toolbox 
supports. Firstly, the sample selection infrastructure allows for auto-sampled inputs. 
Sometimes a particular input is sampled automatically by the simulator. For example, 
in an electronics context the parameter space may consist of 3 parameters: 2 geometri
cal design parameters and the frequency. If the simulator simulating this problem uses 
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Figure 4.10: The CombinedSampleSelector class. Multiple sample selectors can be used 
together. A MergeCriterion object is used to merge the different sets of samples 

intelligently. 

a frequency based solver, the simulation engine will be able to (relatively) cheaply 
generate a full sweep of the frequency response for a given value of the geometric 
parameters. Essentially this means that the model should be constructed with 3 param
eters but that sampling should only take into account 2 parameters since the frequency 
is sampled by the simulation engine (auto-sampled). 

Secondly, a sample selection algorithm can be applied on multiple outputs simul
taneously, taking into account their correlation. So if multiple outputs need to be mod
eled together (see for example the applications in [245, 246]), the sample selection 
algorithm can take this into account in order to propose new sample locations. 

Thirdly, in most cases the input domain under consideration is rectangular and 
defined by simple box constraints. However, it is not unusual for the domain to contain 
infeasible regions, delineated by linear or nonlinear constraints. See for example the 
work in [95]. If these are known in advance the different sample selection algorithms 
can take them into account. In the OptimizeCriterion system the level of constraint 
support depends fully on the optimizer used. In the pipeline system constraint support 
depends on the candidate generator and/or merge criterion used. 

4.5.3 Sample evaluation subsystem 

Once promising sample points have been selected it is the task of the sample evaluation 
subsystem to ensure that the necessary simulations are performed. There are two main 
parts to this subsystem: the SampleEvaluator hierarchy and the SampleQueueManager 
hierarchy. The sequence of events showing how they interact is illustrated in figure 
4 .11 . This is an important figure and should be kept in mind when going through the 
remainder of this subsection. 
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Figure 4.11: Sequence diagram showing how the different components in the sample evaluation 
subsystem work together. 

4.5.3.1 SampleEvaluator hierarchy 

The central class in the sample evaluation subsystem is the SampleEvaluator interface. 
It defines methods for submitting SamplePoint objects for evaluation, and retrieving 
them once they have been evaluated. Depending on which SampleEvaluator imple
mentation is used, evaluation (calculating the response output for a given input loca
tion) can occur through different means: a Matlab script, a native executable, a data 
set, a Java class, etc. The class hierarchy is shown in figure 4.12. 

The SampleEvaluator usually runs in its own thread (if one of the threaded sub
classes are used). For example, the LocalSampleEvaluator employs a pool of threads 
to perform simulation evaluations. This allows it to take advantage of multi-core or 
multi-CPU hardware. More importantly, it allows sample evaluation (i.e., simulations) 
to run in parallel, without blocking the modeling code (native Matlab only supports a 
single thread of control). The result of this is that communication between the control 
code and the sample evaluation code occurs asynchronously through the use of queues. 
Managing these queues is the task of the sample queue manager component. 

4.5.3.2 SampleQueueManager hierarchy 

The Sample Queue Manager (SQM) is responsible for managing the input and output 
queues that facilitate the communication between the control subsystem and the sample 
evaluator (see figure 4.13). Points requested by the sample selection algorithm are 



www.manaraa.com

T H E S U M O T O O L B O X 4-17 

I I 
1 I 
I I 

Figure 4.12: Sample evaluation hierarchy 

placed on the input queue which, in turn, is emptied by the sample evaluator. Once a 
point has been evaluated, the sample evaluator places it on the output queue where it 
can be retrieved again by the control code. 

asm 

Simulation code 

Figure 4.13: The sample queue manager forms the bridge between the control subsystem and 
the sample evaluation backend. 

Besides input and output queue's , the SQM also keeps track of all sample points 
that are currently being evaluated. To this end a separate thread (PendingMonitorThread) 
is running which continuously monitors how long each point has been simulating, and 
what the average simulation time is per point (taken over a sliding window). The user 
is then able to specify a timeout. If the simulation time of a point exceeds k times the 
average simulation time, the point is considered lost and discarded from the pending 
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set. This mechanism prevents the toolbox from waiting on points where the simulation 
engine is failing to converge. If the point does eventually come back successfully (i.e., 
not failed) it is still included in the modeling, albeit with a warning. 

The input queue of the SQM is itself pluggable, allowing for different queue man
agement systems (see figure 4.14). This can be particularly useful in a distributed 
context (cfr. chapter 6). By default two simple implementations are available: Basic-
SampleQueueMangager, and PrioritySampleQueueManager. The first implements a 
simple FIFO queue, while the second implements a priority queue where samples with 
the highest priority (as determined by the sample selector) are scheduled first. 

Figure 4.14: Sample queue manager hierarchy 

4.5.3.3 Data post-processing 

Sometimes it is necessary to post process data, for example to take the logarithm of the 
response value if it covers a large range. To prevent from having to change the sim
ulator implementation itself, the SUMO Toolbox provides a DataModifier base class 
(figure 4.15). Subclasses override its only method [out] = modify(in) which modifies 
the given response values in some way. For example, this may be done to improve the 
modeling process (e.g, multiply by some scaling factor) or to stress test the modeling 
code by applying a modifier that adds outliers or noise to the response data. 

Calling the modify(..) method is done in the SampleManager class. Besides apply
ing modifiers, this class takes care of selecting the appropriate inputs/outputs, removing 
out of range samples, scaling points to/from model space and other similar actions. 
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Figure 4.15: Data modifier hierarchy 
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4.5.4 Model generation subsystem 

The fourth major subsystem of the toolbox is the one responsible for generating and 
fitting models. The main concepts involved are: model type, model factory, model 
builder, and measure. How these relate to the model fitting, model parameter opti
mization, and model selection problems is shown in the sequence diagram in figure 
4.16 and explained in detail in the following subsections. Again it is important to refer 
to figure 4.16 throughout the discussion below. 

mb AdapttveModelBulldcr 1 mf Model Factory 1 ] 

run Loop I 
[whi le not converged] 

creatcModcKparamters) . 

new(parameters*) 

scoreModel(model) 

model Model 

model I 1 

tn 

Figure 4.16: Sequence diagram showing how the different classes in the model building 
subsystem inteiact. 
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4.5.4.1 Model types 

Arguably the most important class in the S U M O framework is the Model class. Model 
serves as the base class for every supported surrogate model type: neural networks, 
support vector machines, Kriging, and many others. Thus the Model class encapsulates 
the essence of a function approximation technique that is able to generalize from given 
data. Methods include: 

• constructf samples, values) : fit a model on the given data 

• evaluate(samples) : evaluate the model at the given data points 

• plotModel(..) : plot the model 

• getDimensions() : get the number of inputs and outputs 

• complexityO : return the complexity of the model as a scalar value (e.g., number 
of parameters) 

• getDescription() : return a user friendly description of the model as a string. 

Many more methods are available, but these are the most important. Some methods of 
Model have the suffix InModelSpace in their name. To the outside world the toolbox 
always expects data to be in simulator space, i.e., in the original domain determined by 
the problem. However, internally the toolbox works exclusively in the domain [— 1, l]d. 
This is referred to as model space. Thus a method that deals with data typically for
wards the call to to variant with the InModelSpace suffix after scaling the data to model 
space. For example, an evaluate(..) call will arrive at the base class implementation 
which performs the scaling and forwards the call to evaluateInModelSpace(..) which 
performs the actual operation. 

There is only one abstract method that a subclass must implement: 

• evaluateInModelSpace(samples) : evaluate the model at the given set of points, 
where the points are defined in model space. 

Remark that the constructInModelSpace(..) method is not abstract. This is because not 
all models have a fitting phase. Take for example models based on lazy learning (e.g., 
nearest neighbour, locally weighted regression). 

Besides the two abstract methods a subclass may override other methods with more 
efficient, model specific implementations. Two good examples in this respect are: 

• getExpression() : return a closed form expression of the model. This method 
makes it possible to export a model object to a S U M O Toolobx independent 
format. 

• evaluateDerivative(samples) : evaluate the model derivative at the given points 
(the base implementation uses a numeric approximation) 
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For a full list of methods and subclasses the reader is referred to the implementation. 
As an aside, the model subclasses do not have to be implementations of pure ap

proximation techniques. Subclasses may be written that wrap existing models in order 
to change their behavior or hide particular inputs or outputs. For example the Com-
plexWrapper class wraps a model with two outputs (representing the real/imaginary 
part of the data) in a new model that has one complex valued output. This model can 
then be used transparently just as any other. Other model types in this spirit include: 

• EnsembleModel: wraps one or more models in a weighted ensemble 

• ExpressionModel: wraps any analytical expression as a SUMO Model object 

• DataModel: wraps a fixed dataset in a model object. This is useful to explore a 
high dimensional data set using the GUI model browser in SUMO. 

• OutputFilterWrapper: a wrapper that can transparently add or remove outputs 
from a model 

Many other (hybrid) scenarios are possible. For example one could create a new model 
class that implements a space mapping or difference mapping model. 

Once a model has been generated, the toolbox provides a GUI to load, expore, and 
asses the quality of the generated model. A screenshot of the model browser and its 
model information window is shown in figures 4.17 and 4.18. 

4.5.4.2 Model builders 

At the other end of the model generation spectrum we encounter the model builder 
classes. Recall from section 3.7.2 that each model type is characterized by a set of 
hyperparameters 0 that control the structure and complexity of the model. The optimal 
choice of 6 can be determined through an optimization process (cfr equation 3.2). 
In the toolbox this optimization process is coordinated by the AdaptiveModelBuilder. 
Depending on the subclass, a different optimization algorithm is used to optimize the 
model parameters (see figure 4.19). 

The AdaptiveModelBuilder class encapsulates the common logic between different 
model builders such as: managing and evaluating the different measures (cfr. section 
4.5.4.4), tracking the modeling progress through a number of profilers (cfr. section 
4.5.7), saving intermediate results, managing the best model trace (cfr. section 4.5.4.5), 
and implementing the different restart strategies (cfr. section 4.5.4.6). In this way the 
different subclasses can focus on the optimization part itself. 

The main method from AdaptiveModelBuilder that drives the model generation 
is the runLoop(..) method. The base class implementation generates a single, fixed 
model by invoking the createModel() method from the nested ModelFactory class (see 
section 4.5.4.3). Thus in the base implementation there is no optimization, the model 
parameters are fixed or can be optimized by the model type itself (for example Kriging 
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Figure 4.17: A screenshot of the model browser GUI 

models often implement their own specific hyperparameter optimization method based 
on the likelihood). 

The main model builder subclasses in the S U M O Toolbox are: 

• OptimizerModelBuilder : wraps any of the optimizers from the S U M O Opti-



www.manaraa.com

T H E S U M O T O O L B O X 4-23 

I r i z I E L 

Model 

ffl&j&fili. Clo Dal score 
EffigF-11 W&U. VaJldatwnSet it,***) 
^HOSI I 1HAG \ altdaiionSsi <b**q> 

| | 8 g | T w p * 
gjgijffi samples 
^^StunvMue 
^ I m i v val ic 
]§§fj$m«>an vaJU* 
^*^m*-an at? olJie 
{|Sg|rn*x afcjolm* 
S | § | M S E S 
g|8|RMSE 
a$3*EE 
tiys|'nw*n relative 
SftranHan ref (+1) 
^gafetiax t*laiiv* 
a ^ m a x rel (+1) 

K§HP"> 
iLS^RPiE 

747£ » 
0 9814 P 
o ei6"; 

-o •'see 
0 OlcO 
0^4CP 

36pJe 04 
0 (P32 1 
Q OlcO 
0 3 490 
00124 ' 

184 ">744 
0 13~6 
0 395"; j 
O0594 

0 1328 
o eryc 
C 05^2 

Eite £drt t * w Jn»«n I&ols IJesVtop )j|*i<*** fctelp 

,8 

- J 

1 
d 
01 

0 
e aooejD* » o ansae* we asean KN 

Jl 

-^ 
§F 

>" 
~ 

m 

H i m 

lllli 
; i l 1 i 

( t | ( ! 

mm 

> • 

— 

j . 

j f 

— 
i 

I I I ! , ! 

I i l . l l 

Llul 
I ' m , 

MIDI 

j f 

-
>• 
— 

I 

n 

h i l l 

l i l . i l 

i i l i n 

hud 
nun 

Figure 4.18: A screenshot of the model info GUI and sample distribution plot. Both of which 
can be opened from the model browser in figure 4.17. 

mizer hierarchy (cfr. section 4.5.6). Thus this class provides a very fast and 
easy way to try out different optimization algorithms for optimizing the model 
parameters. All that is needed is an Optimizer subclass. 

• SequentialModelBuilder : implements a kind of evolutionary strategy. Sequen-
tialModelBuilder maintains a sliding window history of previously constructed 
models and sequentially asks the model factory to generate a new model based 
on the history. Effectively this class allows for a fully custom model parameter 
optimization method. 

• GeneticModelBuilder : model parameter optimization is done based on a GA. 
The difference with the OptimizerModelBuilder class is that GeneticModelBuilder 
supports a population of model objects with model type specific operators (ver
sus a population of real valued vectors and classic genetic operators). 

• ParetoModelBuilder : a base class for multi-objective hyperparameter optimiza
tion (see chapter 8) 

• EGOModelBuilder : a model builder that implements the E G O algorithm from 

http://Iil.ll
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Figure 4.19: Model builder hierarchy 

Jones et al. [89]. Internally a blind Kriging model is used to predict which ar
eas of the hyperparameter optimization landscape should be sampled to achieve 
better quality models. 

Together these subclasses already cover a very wide range of strategies for optimizing 
the model parameters. Others, e.g., one based on Bayesian inference, can easily be 
added. 

4.5.4.3 Model factories 

The Model class hierarchy encapsulates the features of a particular fitting method while 
the AdaptiveModelBuilder class encapsulates the algorithm for setting the model pa
rameters. However, there is still one piece missing from the puzzle. While the im
plementation details of each fitting type are hidden behind the Model interface, con
structing an object of a particular model type still requires knowledge of the specific 
parameters involved. This means that, as-is, a model builder class would need to be 
aware of the specific, different ways of instantiating each model subclass. Something 
that should be avoided from a software engineering viewpoint. This is where the model 
factory class hierarchy comes in, an implementation of the factory method design pat
tern [247] shown in figure 4.20. 

A model factory object sits in between the model type and the model builder. It 
abstracts away the instantiation and configuration of individual model types so that a 
model builder can operate on many different model types without having to change 
any code. The model builder does not interact with the model objects directly, it only 
interacts with the model factory. The sequence of events is illustrated in figure 4.16. A 
model builder instance instantiates a model factory class with the relevant X M L con
figuration fragment and repeatedly queries it for model objects in its runLoop method 
(which implements some optimization algorithm). 

The goal of the factory pattern is to abstract away the concrete instantiation de
tails of individual model types from the model builder through the use of a factory 
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Figure 4.20: The factory method design pattern 

method. However, different model builders may require slightly different factory meth
ods. Thus, depending on which model builders should be supported by a model factory 
for a specific model type, the set of implemented factory methods will differ. For this 
reason the base model factory class, ModelFactory, can have a number of subclasses 
(see figure 4.21). 

An important subclass in this respect is GeneticFactory. GeneticFacto<ry requires 
subclasses to override crossover and mutation methods in addition to the pure cre-
ational factory methods from ModelFactory. The two required factory methods from 
ModelFactory (createModel(..), and createInitialModels(..)) are usually sufficient for 
most model builders. 

Thus, in sum, adding support for a new model type in the toolbox reduces to adding 
a new Model subclass and corresponding ModelFactory subclass. Which factory meth
ods should be implemented will depend on the ModelFactory class that is used as a 
base. But again, subclassing ModelFactory is usually enough. A concrete example is 
given in section 4.8. 

4.5.4.4 Model selection 

The whole model building process is of course useless without some performance met
ric to guide the model parameter optimization. Recall from section 3.2 that the perfor
mance metric is a function A(-) that maps a particular approximation model / onto a 
positive scalar quantity, representing model quality. I.e., A : S f—* R + . In the SUMO 
Toolbox this is the task of the Measure class. Given a model object a Measure instance 
returns a scalar value indicating the quality of the model (lower is better). Again, differ
ent subclasses are possible, depending on the particular algorithm being implemented 
(cross validation, validation set, AIC, etc.). This is shown in figure 4.22. Each measure 
can also be configured with an error function e. While A determines what algorithm is 
used to assess the model accuracy, e determines what type of error is used (e.g., mean 
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Figure 4.22: Measure hierarchy 

The SUMO Toolbox also supports using multiple measure objects together. There 
are two options here: 

• A single objective model builder is used: a weighted sum of the measures is 
minimized (each Measure object can be assigned a weight) 

• A multi-objective model builder is used: all measures are minimized simultane
ously (see chapter 8) 
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Finally, a measure can also be turned off or on. If set to off the measure is calculated 
on each model as usual, however its results are not used in the modeling process in 
any way. It is simply used as extra debug information. This is useful if you want 
to objectively track the true accuracy of the models produced using a dense test set 
without interfering with the model building process. 

4.5.4.5 Model saving and elitism 

While the model builder is going through the model complexity selection process it is 
important that the user is kept informed about the current progress and that intermedi
ate results are saved for future reference. This is particularly relevant across multiple 
sampling iterations. For this purpose, and to ensure good models are not lost, the tool
box maintains a best model trace, i.e., a history of the k best models (as assigned by 
the model builder based on their measure score(s)) built so far. Each time a model is 
found that has a lower score than the previous best model it is saved to disk together 
with a plot of the model. 

The purpose of the best model trace is as a kind of elite (to take a term from evolu
tionary computing). It is managed in one of two different ways depending whether 

1. a single measure is enabled 

2. multiple measures are enabled, either through scalarization or in a direct multi-
objective approach 

In the first case the best model trace is simply the linear ranking of the k best models, 
ordered according to their measure score. In the second case the best model trace 
is sorted according to the Pareto dominance of the different models on the different 
measures. In this case the best model trace contains the model with the lowest score 
on each measure separately (the extreme points of the Pareto front) plus the models 
taken from the first front, second front, third front, etc. until the maximum size k has 
been reached. By using such a scheme we prevent (to a degree) discarding models that 
perform very well on one measure but poorly on another. It might be that if a few more 
points become available, the model may turn out to score well on the other measure as 
well. The safety net is thus better than if a linear ranking were used. 

4.5.4.6 Restart strategies 

Recall from section 3.7.2 that the hyperparameter optimization surface is dynamic due 
to the non-stationary data distribution. This intuitively means that dynamic optimiza
tion algorithms like PSO should be preferred over static ones. This also implies that a 
restart strategy is needed to restart the model parameter optimization once the (static or 
dynamic) algorithm has converged. We defined five restart strategies: continue (sim
ply continue with the final result of the previous modeling iteration), random (restart 
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randomly), model (use model type specific information to decide where to start), and 
intelligent (a hybrid combination). Which restart strategy should be used is decided by 
the AdaptiveModelBuilder class. 

The default restart strategy is intelligent, whose basic rationale is as follows: when 
only little data is available, there is more freedom for the model parameters to change 
but less so when the domain is more densely sampled. Thus, initially the search trace 
of a hyperparameter optimization algorithm (i.e., the points it has visited in the model 
parameter space) will not be very reliable4 . As more data becomes available the re
liability will increase. Or put differently, the confidence that a particular area of the 
hyperparameter optimization landscape leads to good models will increase. 

Based on this rationale the intelligent restart strategy works as follows: as long as 
the optimization process is making improvements (the accuracy continues to increase) 
the hyperparameter optimization simply continues from the last solution when more 
data arrives. If this is not the case, a new starting point is selected based on the fuzzy 
combination of ( I ) information about what part of the model parameter space has been 
explored so far, (2) the regions of the parameter space that result in the best models, 
and (3), the current sample density (in order to calculate the reliability). 

In this way, the next hyperparameter optimization iteration can be seeded optimally 
and the model parameter space is searched more thoroughly. 

4.5.5 Configuration 

All the subsystems and classes discussed so far are useless without some framework to 
instantiate and configure them. Thus, in order to allow full control over which subset 
of plugins should be used and to allow full customization of each plugin, the whole 
toolbox is extensively configurable using two X M L files. 

The first is the simulator configuration file and it defines the interface to the sim
ulation code: number of input and output parameters, type of each parameter (real, 
discrete or complex), simulator executables and dependencies and/or one or more data 
sets. An example that describes the interface to simulation code for modeling a passive 
electrical component is shown in figure 4.23. 

The second X M L file contains the configuration of the toolbox itself: which outputs 
or inputs to model, model type to use, how the model quality should be assessed, 
whether sample evaluation should occur on a grid or cluster, etc. This file also allows 
the user to specify multiple runs. Recall from section 4.5.1 that every run can be 
configured separately and represents a different surrogate modeling experiment. Figure 
4.24 shows part of an example toolbox configuration file that describes a possible setup 
for modeling the problem from figure 4 .23. Figure 4.24 is an illustrative example that 

4This of course depends on the metric that is used to guide the hyperparameter optimization. For example, 
say one uses a trustworthy metric that is independent of the available samples (e.g., a fixed dense validation 
set). In such an artificial setting (typically such information is not available) the reliability is maximal. 
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<Simulator> 
<Name>Step Discontinuity</Name> 
<Description> 

The stepdiscontinuity example contains a simulator 
and. some datasets concerning a step discontinuity 
in a rectangular waveguide. Simulator code was written 
by Robert Lehmensiek and Petrie Meyer. 

</Descriptions 

<InputParameters> 
<Parameter narae="freguency" type=" r e a l "/> 
<Parameter name= " g a p H e i g h t" type= " r e a l"/> 
<Parameter name = " s t e p L e n g t h " type=" r e a l " / > 

</InputParametera > 

<OutputParameters> 
<Parameter name="Sll' 
<Parameter name="S12' 
<Parameter name="S21' 
<Parameter name="S22" type=" c o m p l e x " / > 

</OutputParameters> 

type="complex"/> 
type="complex"/> 
type="complex"/> 

<Implementation> 
<Executables> 

<Executable platform="matlab"> 
StepDiscontinuity 

</Executable> 
<Executable platform="unix" arch="xS6_64"> 

/usr/local/bin/StepDiscontinuity 
</Executable> 

</Executables> 

<DataFiles> 
<ScatteredDataFile id=" d e f a u l t "> 

StepDiscontinuityScattered.txt 
</ScatteredDataFile> 

</DataFiles> 
</lmplementation> 

</Simulator> 

Figure 4.23: Example simulator configuration file. This file defines the interface to the data 
source (number of inputs, outputs, implementation, etc.), in this case a modeling code 

from electronics. 

shows how algorithms can be combined. It is not intended to be complete, in reality 

many more options and possibilities are available. 

Figure 4.23 defined the output of the simulation code to be the four complex scat

tering parameters S\\,S\n,Si\^S-rz. In figure 4.24 one run is defined that models the 

first output twice using rational functions (once with added noise) and the second out

put using blind Kriging models. The suffix _pso implies the model complexity of the 
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<ToolboxConfiguration> 
<Plan> 

<.'-- The identifiers between the tags are id's that refer to 
XML tags defined further down the file. These are not shown 
for brevity. Each of those tags are again fully configurable 
through their own set of options --> 

<InitialDesign>latinHypercube</InitialDesign> 
<Sampleseleetor>LOLA</SampleSeleetor> 
<Measure t.ype=" CrossValidation" target=" 0 . 01" errorFcn="mse" /> 

<.'- - A run is a single surrogate modeling experiment. 
The configuration file may contain multiple runs. --> 

<Run narne=" StepDiscoDemo" repeat="J"> 

<!-- Problem to model, refers to the file in figure 4.23 --> 
<Simulator>StepDiscontinuity</Simulator> 

<!-- How should each of the responses be modeled --> 
<Outputs> 

<Output name="SlI"> 
<AdaptiveModelBuilder>rationaljpso</AdaptiveModelBuilder> 

</Output> 

<Output name="SJ1"> 
<AdaptiveModelBuilder>rational_pso</AdaptiveModelBuilder> 
<Modifiar type="n o i s e " distributions"normal"/> 

</Output> 

<Output name="S12"> 
<AdaptiveModelBuilder>blindKriging</AdaptiveModelBuilder> 
<SampleSeleetor>density</SampleSelector> 

</Output> 

<Output name = " 3 1 1 , 3 1 2 " complexHandling="modulus"> 
<AdaptiveModelBuilder>ann_geneticc/AdaptiveModelBuilder> 
<Measure type=" ValidationSet" target="0.01" /> 

</Output> 
</Outputs> 

</Run> 

</ToolboxConfiguration> 

Figure 4.24: Example toolbox configuration file. This file defines how the data source should be 
modeled: which outputs, which model type, how to score models, etc. 

rational functions is optimized using PSO. The last output tag specifies that ^i i and £12 
should be modeled together in one ANN model (evolved using a genetic algorithm). 
As stated in the X M L comments, the text between the opening and closing tags should 
be interpreted as an id that refers to a particular tag defined lower down in the file. 
This tag is again fully configurable through its own set of options. An example for the 
ann_genetic id is shown in figure 4.25. 

Adaptive sampling is performed starting from an initial latin hypercube design, 
using the LOLA method [239] or density method (for blind Kriging). Also, since 
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the A N N model type cannot handle complex numbers directly, the modulus is fitted 
instead. Since training an A N N is expensive, a validation error is used instead of 
the globally defined cross validation measure. Note that the user need not (unless 
he chooses otherwise) manually select a topology for the ANN, orders for the rational 
functions, or correlation parameters for the Blind Kriging model. These are determined 
automatically by the model builder. 
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<ToolboxConfiguration> 
<Plan> 

</Plan> 

<AdaptiveModelBuilder id= " a n n _ g e n e t i c " type= " G e n e t i c M o d e l B u i l d e r " 
combineOutputs="true"; 

<Option key="restartStrategy" value="continue"/> 
<Option key="crossoverFraction" value="0.7"/> 
<Option key="maxGenerations" value="10"/> 
<Option key="eliteCount" value="l"/> 
<ModelFactory id="ann" type="ANNFactory"> 

<Option key="crossoverFcn" value="crossover"/> 
<Option 'key="mutationFcn" value= "mutation" /> 
<Option key= " c r e a t i o n F c n " value="createInitialPopulation"/> 
<!—initial hidden layer dimension--> 
<Option k e y = " i n i t i a l s i z e " value="3,3"/> 
<[--comma separated list of allowed learning rules--> 
<Option key=" a l l o w e d L e a r n i n g R u l e s " value="trainJbr"/> 
<l--how many epochs to train for--> 
<Option yzey="epochs" value="300"/> 

</ModelFactory> 
</AdaptiveModelBuilder> 

</ToolboxCon£iguration> 

Figure 4.25: Example of the configurable component ann_genetic that is referred to in figure 
4.24. The component represents an adaptive model builder that implements a genetic 

algorithm and drives a neural network model factory. 

4.5.6 Optimizer hierarchy 
Optimization plays an important role in the toolbox with many modeling and sampling 
algorithms reducing to an optimization problem. Therefore it is useful if a pluggable 
optimization framework is available that allows one to quickly try and compare differ
ent optimization algorithms. For this reason the toolbox includes a Optimizer class that 
forms the basis of a lightweight, general purpose optimization hierarchy (figure 4.26). 

Figure 4.26: Optimizer hierarcy 
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Different subclasses are available that implement various optimization algorithms 
and that can be reused inside model builders, sample selectors, measures, or any other 
component. 

4.5.7 Logging and Profiling 

During the execution of the toolbox it is important that all decisions are properly logged 
and that the modeling progress can be monitored in real time. This is important to 
facilitate debugging but also helps a domain expert gain trust in the algorithms. The 
sumo toolbox distinguishes between two types of logging information: textual and 
numeric. 

Textual logging information is handled through the standardyava. util. logging frame
work (figure 4.27). Central is the Logger object on which logging calls are made. Log
gers are organized in a hierarchical namespace and child Loggers may inherit some 
logging properties from their parents in the namespace. These logger objects allocate 
LogRecord objects which are passed to Handler objects for publication. Both loggers 
and handlers may use logging levels (FINE, INFO, WARNING, SEVERE, ...) and 
(optionally) Filter objects to decide if they are interested in a particular record. When 
it is necessary to publish a LogRecord externally, a handler can (optionally) use a For
matter to localize and format the message before publishing it to an I/O stream. Each 
logger keeps track of a set of output handlers, which direct output to a file on disk, the 
console, a remote machine, to another handler, etc. 

Outside -jd 

Figure 4.27: Logging subsystem based on Java.util.logging 

The java. util. logging APIs are structured so that calls on the logger APIs can be 
cheap when logging is disabled. If logging is disabled for a given log level, then the 
logger can make a cheap comparison test and return. If logging is enabled for a given 
log level, the logger is still careful to minimize costs before passing the record into the 
handlers. In particular, localization and formatting (which are relatively expensive) are 
deferred until the handler requests them. 

For numeric data a custom Profiler framework is available (figure 4.28). Central is 
the Profiler class which essentially implements a data table where each column repre-

Handler 

Handler 

Handler 
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sents a variable that is monitored. The Profiler class contains methods for publishing 
ProfileRecord objects, each of which represents a data tuple, or row, of the data table. 
Profilers are organized in a linear namespace and managed through a ProfilerManager 
singleton object. Analogous to the logging framework each profiler can have multiple 
OutputHandler's that can direct data to an ASCII file, Java JTable, or a chart genera
tion component. The latter renders the data as a chart in order to save it as an image 
and/or display it in real time in the profiler browser GUI. Other handlers can of course 
be freely defined, e.g., a handler that saves output directly in a database or a handler 
that is able to pipe data directly over the network to a remote client. Like the logging 
framework, a profiler can be enabled or disabled if necessary. 

Figure 4.28: Profiling subsystem 

A screenshot of the profiler browser GUI in its current incarnation is shown in 
figure 4.29. Examples of profilers include: 

• a profiler to keep track of the model parameters during the hyperparameter opti-



www.manaraa.com

THE S U M O TOOLBOX 4-35 

i-'J r'< SUMO-Toolbox p n n i a n for t i n 
Search 

Acad«mtic_2D_Twlc*vkriolrtf)_lcrlglr>g 

SampieBaichSlzeProriler 
AvailableNodesPiofiler 
SampleEvaluationTlmeProfiler 
SamplesPerMlnuteProfller 
Measur«.out.Cro5sVallda1ion.rooiPelath 
BestModelScore.out I 
BapsedTlme.out j 
ModeTComplcxity_oi.it i 
MemorytJse.out 
sampleMlnlmum_out ' 
RebulldBeslModelEffect.oul 
best.theta.out 
besi_cvpe_out 
besl.regresslon_ou! 
best-Correlation out 

Chart Tvpe 
• XY 

3D Line 
3D Bar 
Pie 
Area 
Level 

._• Line 
'" 8ar 
i ' Stacked Bar 
J 3D Pie 

< ) Stacked Area 
O Scatter 

Plot \ Data Table 

Hyperparameter optimization process 
0 SOOEO 

5 OOilEO 

SS00C0 

6 OOOEO 

? SOOEO 

7 OOOEO 
_ SOOEO 
u OOOtO 
5 50OEO 
5 OOOEO 
4 50OEO 
4 OOOEO 
3 SOOEO 
3 OOOEO 
2 SOOEO 
2 OOOEO 
1 550E0 

L OOOEO 

5 IjOOE-l 

0 OOOEO 
3 OOOEO 1 OOOEO 2 rOQEO 3 00OE3 4 OOOEO 5 OO0C0 G "O0E0 

M o d e l * 

c The C o r r e c t i o n F»rf tmeters (1 st v - l u e ) 

-c>- T h e Corre la t ion P - r _ m e l e r s (2 rid value) 

G e n e r - l e d by the SUMO T o o l b o v6 2 - h t tp / / t t r t w sumoiMiki in ter u g e m be 

Figure 4.29: Screenshot of the current profiler browser GUI. Each enabled profiler registers 
itself with this browser which shows and updates the data in real time. 

mization (e.g., how does the regularization parameter y evolve versus the number 
of samples as we optimize the SVM hyperparameters using pattern search). 

• a profiler that keeps track of the average duration of a single simulation 

• a profiler that keeps track of the accuracy of the current best model 

• a profiler that plots the Pareto search trace during a 2-objective hyperparameter 
optimization 

4.6 What about optimization? 

Recall from section 1.1.1 that the focus of this dissertation is on accurate models of the 
complete design space, i.e., global surrogate models. Most research on surrogate mod
els is, however, directed towards optimizing the response instead of mapping it glob
ally. While the SUMO Toolbox does not implement pure SBO methods it does provide 
a flexible implementation of infill based algorithms. The most popular of which is 
probably the Efficient Global Optimization (EGO) algorithm [89]. Infill algorithms 
like EGO, are neither purely local or global. Rather, they use a global model of the 
design space together with a sampling strategy that focuses on sampling near the pre
dicted optima (depending on the criteria used). The infill framework and its relation to 
the toolbox is discussed in the following two subsections. 

http://ModeTComplcxity_oi.it
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4.6.1 Optimization through infill criteria 
Optimization methods can greatly benefit by taking advantage of surrogate models. 
The extra information gained helps in avoiding local optima and efficiently guiding the 
search to global optima. E.g., a surrogate model offers a cheap alternative to the ex
pensive simulator for exploration and exploitation purposes. Likewise, the practitioner 
is able to explore the region of the final optimum quite easily. Various directions have 
been taken to incorporate surrogate models in the optimization process, good reviews 
can be found in [4 ,44 ,63] . 

A recent approach is to use global surrogate models and emphasize more on adap
tive sampling versus local model management strategies. However note that while 
these surrogate models are a global approximation, they are not necessarily accurate 
over the whole design space. This depends on the adaptive sampling strategy, or infill 
criteria. Starting from an initial approximation of the design space, the infill criterion 
identifies new samples of interest (infill or update points) to update the approximation 
model . It is crucial in global SBO to strike a correct balance between exploration5 

and exploitation6 . A well-known infill criterion that is able to effectively solve this 
trade-off is expected improvement. Going back to work by Mockus et. al. in 1978 
1978 [248] it is most well known through the E G O algorithm proposed by Jones et 
al. [89 ,249] . Subsequently, Sasena compared different infill criteria for optimization 
and investigated extensions of those infill criteria for constrained optimization prob
lems in [250]. 

Thus, in sum, an unkown function can be optimized by repeatedly sampling a sur
rogate model of the function in the neighborhood of the minimum. The criterion used 
to drive the sampling is called an infill criterion, of which the expected improvement 
cirterion is the most well known example. The expected improvement equation (4.4) 
is easiest to interpret graphically, as in figure 4.30. At x = 0.5, a Gaussian probability 
density function is drawn and expresses the uncertainty about the predicted function 
value of a sampled and unknown function y = / ( x ) . Thus, the uncertainty at any point 
x is treated as the realization of a random variable F(x) with mean y = / ( x ) (predic
tion) and variance s2 = <72(x) (prediction variance). Assuming the random variable 
T(x) is normally distributed, then the shaded area under the Gaussian probability den
sity function is the Probability of Improvement (Pol) of any newly calculated function 
value y(x) over the intermediate minimum function value /,;/,>,(the dotted line), denoted 
a s P ( y <fmi„), i.e., 

5 enhancing the general accuracy of the surrogate model 
6enhancing the accuracy of the surrogate model solely in the region of the (current) optimum 
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J mm 

Pol = P(y < fmin) = J Y(x)dy 

(4.1) 

where <3>(r) is the standard normal cumulative distribution function <!>(/) = 
and erf(-) is the error function. The probability of improvement is already a very use
ful infill criterion. However, while this criterion describes the possibility of a better 
minimum function value, it does not quantify how large this improvement will be. 
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Figure 4.30: Graphical illustration of a Gaussian Process and expected improvement. A 
surrogate model (dashed line) is constructed based on some data points (circles). For 

each point the surrogate model predicts a Gaussian probability density function (PDF). 
At x = 0.5 an example of such a PDF is drawn. The volume of the shaded area is the 

probability of improvement and the first moment of this area is the expected 
improvement. 

EI quantifies the improvement by considering the first moment of the shaded area, 
i.e., every possible improvement over/„„„ multiplied by the associated likelihood. For 
continuous functions EI is an integral defined as: 

J nun 

E(I)= J I-Y(x)dy, (4.2) 

where 

/ = max {fmi„— y ,0) . (4.3) 
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Hence, EI can be rewritten in closed form as: 

E(I)= Ufmin-y)-*(^)+s"-t(^) ifs>o^ (44) 

\ o i / l = o ' 

where <p(t) = —i==«?"_r'/2 is the standard normal probability density function and <!>(•) 
is the cumulative distribution function defined before. Here we ignore the bias in the 
prediction variance of kriging, details on how to estimate the correct kriging variance 
by bootstrapping is given in [251]. The EI (Equation 4.4) and Pol (Equation 4.1) serve 
as utility functions, often conceived as figures of merit, which have to be optimized 
over x to find the subsequent data point to evaluate. Note, however, that besides the 
prediction y — fix) of the surrogate model, a point-wise error estimation s = cr(x) of 
the surrogate is also required. 

Therefore, the original E G O algorithm used kriging as surrogate model of choice, 
as Kriging provides closed formulae for prediction as well as a point-wise error es
timation [6, 252]. Kriging, in fact, is part of a broader class of approximation meth
ods, namely, Gaussian Processes (GP). While traditional approximation methods only 
predict a single function value, GP methods predict a complete normal distribution 
F(x) ~ ^V(y,s) for each point x. The predicted distribution imparts the probability 
that a particular function value occurs. For a full overview of modern GP the reader 
is referred to the excellent GP reference book of Rasmussen et al. [127]. As a final 
note, in case there is a cheaper, but more inaccurate, simulator available multi-fidelity 
approximation models can be used. For instance, co-Kriging is able to incorporate sev
eral levels of fidelity samples in its prediction [253,254] . This has been successfully 
used to optimize a transonic civil aircraft wing in [255]. 

Over the years small changes and improvements to expected improvement have 
been suggested, see for example Sobester et al. [256], Parallel versions of EGO have 
also been proposed [257,258], as have multi-objective formulations [259—262]. While 
expected improvement is a very popular criterion, other infill criteria were suggested 
that solve the exploitation and exploration trade-off completely differently. For in
stance, Regis et al. introduced the Constrained Optimization using Response Surfaces 
method in [263]. In addition, instead of optimizing the infill criteria other, less expen
sive, search strategies have been developed. Wang et al., for instance, treat the infill 
criterion as a probability density function and propose a dimensional-free method to ef
ficiently sample according to the probability given by the infill criterion. This has been 
implemented by considering the prediction itself as the infill criterion in [240,264], 
thus focusing only on exploitation, though other infill criteria may be used. More in
formation on infill criteria can be found in [8] and the references therein. 
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4.6.2 Infill criteria in the SUMO Toolbox 

As should be clear, the infill criteria match up perfectly with the OptimizeCriterion 
sample selector described in section 4.5.2. So applying infill based optimization meth
ods simply requires the use of a specific sample selector. A number of criteria are avail
able that can be used to drive infill point selection process. These include (weighted) 
expected improvement, probability of improvement and generalized expected improve
ment. 

4.7 Applying the toolbox 

Given the many subsystems and frameworks in the toolbox it is useful to take a step 
back and briefly explain the steps a user must go through in order to generate a model 
for a particular problem. We only list the main steps here, details can be found on the 
SUMO Toolbox website. 

1. Comply with the expected data format: firstly the user should assure his data 
source (simulator, data file) adheres to the simple format expected by SUMO 
(e.g., a column based ASCII format with one point per row). 

2. Generate a simulator configfile: secondly the user needs to generate a simulator 
configuration file (cfr. the example in figure 4.23) and place all files relevant to 
the data source (documentation, shell scripts, etc.) into a project directory with 
the same name as the simulator file (without the extension). 

3 . Select appropriate options: starting from the default toolbox configuration the 
user selects the appropriate plugins and options for his problem. 

4. Perform the run: execute the toolbox with the modified toolbox configuration 
file, monitor the modeling process and analyze the results 

Thus applying the toolbox to a novel problem is rather straightforward. Difficulties 
usually lie in ensuring the simulation code is well behaved (e.g., terminates properly, 
returns valid results, license environment is properly setup, etc.). Steps (2) and (3) 
currently require manually editing the X M L files. Ideally this should be avoided but 
the structure of both files is still simple enough to grasp and modify manually. A 
prototype GUI for both files is available but not yet robust enough for general use. 

4.8 Extending the toolbox 

Besides applying the toolbox in its existing form to new problems, an important use 
case is extending the toolbox to include new algorithms and techniques. The only 
miportant prerequisite here is that the user understands the basic concepts behind object 
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oriented programming. If this is the case, extending the toolbox can be done quite 
easily by subclassing a particular base class. 

For example, to add a new DoE the user should write a Matlab file that subclasses 
from InitialDesign, implement his logic in the generatef..) method and add a configu
ration section with some options to the toolbox configuration file. The same is true for 
adding a new measure, sample selector, optimizer, or logging/profiler handler. 

Adding support for a new approximation method is a bit more work since it in
volves subclassing two classes (Model and ModelFactory) instead of one. The mini
mum effort amounts to: 

• Subclassing Model and providing two Matlab functions: 

— constructInModelSpace(..): fits the new fitting technique on the given points 
This method may be omitted if the fitting technique relies on lazy learning. 

— evaluateInModelSpace(..): evaluates the new fitting technique on the given 
points. 

• Subclassing ModelFactory and implementing the createModel(..) method which 
simply returns an instance of the Model subclass encapsulating the new fitting 
technique. 

With these two files the SUMO Toolbox will be able to use the new fitting technique 
when modeling data. Hyperparamter optimization is, however, not yet possible. For 
that to be possible the user should also implement the following two methods of Mod
elFactory: 

• createInitialModels(..): return an array of model objects with the parameters set 
to the passed values 

• getBounds(..): return the bounds of each model parameter 

With these additional two functions all of the hyperparameter optimization algorithms 
(GA, PSO, simulated annealing, EGO, NSGA-II , etc.) available in the toolbox can be 
used to select the model parameters of the new fitting technique. 

In sum, if the user is aware of the basics of object oriented design it becomes 
straightforward to extend the toolbox with new techniques. The new plugin will also 
automatically be able to make use of the other frameworks available (visualization, op
timization, data interfacing, etc.). The overall advantage is that a user can concentrate 
on the algorithm itself, and need not worry about the associated plumbing. 

4.9 What about classification or time series prediction? 

Section 1.1.2 outlined the scope of this dissertation and there it was explicitly stated 
that we are only concerned with function approximation type problems. Not classi
fication or time series prediction. However, throughout the discussion so far, readers 
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familiar with either problem will have recognized that many of the problems and ap
proaches discussed in this dissertation apply just as well to classification and time series 
prediction as they do to regression. Examples are the problems of model selection and 
hyperparameter optimization. 

It turns out that while the SUMO Toolbox finds its main use cases in regression, 
the abstractions that were developed as part of the framework can just as easily be 
extended to support classification or time series prediction. To give a concrete example, 
adding the necessary functionality so that the full SUMO framework could generate a 
classification model required only 30 minutes of work7 . While of course some extra 
polishing is needed it is a testament to the clean and generic design of the framework. 
Similar support could be implemented for time series prediction if this is needed. 

A classification example is given in section 10.10, but we will not dwell on these 
topics any further. A demo configuration file is available as part of the SUMO distri
bution that illustrates the classification support and that will used as a basis for future 
work in this area. 

4.10 Critique 

Presenting and advocating a new approach/framework to solve a particular problem is 
one thing. Equally important is to regard ones approach critically in order to identify 
flaws or limitations (keeping in mind the scope). 

Let us start with an important advantage of the approach taken by the SUMO Tool
box: the toolbox provides a very convenient and feature rich platform that can be 
leveraged to quickly implement new algorithms and try out ideas. The infrastructure 
plumbing (model plotting, saving, logging, profilers, optimization, etc.) has been taken 
care of, a user of the platform can focus purely on the algorithm or technique of inter
est. At the same time a whole suite of plugins is available to easily test and compare 
with. The downside is that this results in increased complexity of the underlying frame
work and that great care must be taken when designing the necessary APIs. Sacrificing 
software engineering design principles during this process is a recipe for disaster in 
the long term. Thus a considerable amount of thought, discipline, and stewardship is 
needed to ensure the stability, robustness, and flexibility of the underlying code base. 
In addition, maintaining a reusable component library and ensuring the software devel
opers can use this library can be expensive [237]. Care must be taken that all plugins 
remain up to date. These are of course problems that every non-trivial software engi
neering effort must face. Thus the 'solutions ' are well known and described: regular 
communication between developers, code and design documentation and automated 
(regression) testing. 

7 t i t t p : / / s u m o l a b . b l o g s p o t . c o m / 2 0 0 9 / 1 0 / s u r r o g a t e - m o d e l s - f o r - c l a s s i f i c a t i o n , 
h t m l 
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Secondly, while the SUMO Toolbox makes it very easy to try and compare differ
ent surrogate modeling methods it does not really solve the fundamental problem of 
which configuration of plugins should be used for a particular problem. In the ideal 
case a second level of adaptivity is available that makes the selection of components 
itself an automatic step. Note, though, that such additional level is only possible if an 
underlying framework with the necessary abstractions is already available. This is the 
domain of meta-learning [265]. The integrated hyperparameter optimization is already 
a good step in that direction. As is the evolutionary model type selection (chapter 7), 
multi-objective modeling framework (chapter 8), and the ongoing work on dynamic 
sample selection strategies. However, an important downside of additional adaptivity 
and automation is that it comes at a cost. Each increment of adaptiveness brings with it 
new parameters that must be set (increasing the computational cost), adds another layer 
of complexity and indirection, and relinquishes user control. Einstein famously said 
"Make everything as simple as possible, but not simpler ". Therefore a very important 
design goal of the toolbox presented in this chapter was to ensure that adaptive algo
rithms played an important role, but full manual control and problem specificity was 
not sacrificed. As Keane and Nair put it in [4]: "it must also be remembered that even 
the most complex approaches are still subject to the "no free lunch " theorems, in that, 
by adopting highly sophisticated approaches, one is commonly sacrificing generality 
of application. f...f sometimes relatively inefficient methods may be preferred because 
they are simpler to setup or manage". Thus, while an extra layer of adaptivity may be 
intuitively attractive and useful its net benefit should not be overestimated. 

A limitation of the toolbox in its current incarnation is that it does not provide a 
formalized framework for the integration of coarse domain knowledge. Often rudimen
tary equations or approximations describing the problem are available and should be 
used in the modeling process. While such knowledge can be integrated into the SUMO 
Toolbox through new plugins there are no formalized interface primitives or step by 
step instructions to facilitate the process. Ideally the necessary APIs should be added 
to facilitate knowledge integration through the standard space mapping and knowledge 
integration methods [74—76]. There are no inherent limitations in the current frame
work that prevent this from being implemented. Rather it is a question of time and 
manpower. This is a topic for future work. The same is true for a user friendly API and 
plugin system for parameter screening methods. Barthelemy and Haftka [266] state 
that the increase in cost for generating a response surface as a function of the number 
of input variables is quadratic. The author is inclined to say it is even more than that. 
Thus any integration with standard screening methods would be very useful. 

Another critique is that Moore 's Law and the availability of HPC resources weak
ens the argument in favor of sequential design (and metamodeling in general). If 
enough resources are available a brute force approach, though less elegant, can eas
ily be used. However, while evolutions in computing power have greatly eased the 
modeling and simulation problem, the complexity of the underlying algorithms and 
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the drive to finer timescales and increased dimensionality, readily balance gains in 
computational power. Renowned nuclear physicist Edward Teller once stated "A state-
of-the-art calculation requires 100 hours of CPU time on the state-of-the-art computer, 
independent of the decade.". Furthermore, the use of HPC resources still incurs a cost 
in resources. Thus every simulation saved through an adaptive approach is a simulation 
earned. 

Finally, there is no guarantee that an adaptive, self tuning approach will always 
outperform a simple full factorial design together with a slightly hand tuned model. In 
some cases the benefit of using the former may simply be nihil or too small to be worth 
it. Likewise, high accuracy is not always needed. Often engineers are perfectly happy 
with the one or two significant digits that a straightforward polynomial regression can 
give them. These criticisms are of course valid, ultimately the decision lies with the 
domain expert and the resources at his/her disposal. The mantra should always be "use 
the right tool for the right fob'''' and if in doubt apply Occams razor. 

4.11 Conclusion 

This chapter discussed the philosophy and architecture of a concrete implementation 
of the ideas from chapter 3. The SUMO Toolbox is presented as an adaptive tool that 
integrates different modeling approaches and implements an automated, global surro
gate model construction algorithm. Given a simulation engine or other data source, 
the toolbox generates a surrogate model within the predefined accuracy and resource 
limits set by the user. In order to cope with the heterogeneity of problems and exist
ing methods, strong focus is placed on a modular extensible design without being too 
cumbersome to use or configure. The concrete design goals were: flexibility (many 
problems/domains), portability (easily integrate with the design chain), extensibility 
(many techniques), adaptivity (automation), allow for full manual control (configura
tion), and extensive logging (traceability). 

Given this design philosophy, the toolbox caters to both the scientists working on 
novel surrogate modeling techniques as well as to the engineers and domain experts 
who need the surrogate model as part of their overall design process. For the former, 
the toolbox provides a common platform on which to deploy, test, and compare new 
modeling algorithms and sampling techniques. For the latter, the software functions as 
a highly configurable and flexible component to which surrogate model construction 
can be delegated. In this sense the toolbox can also be used as a model generator 
backend in projects like DAKOTA, VisualDOC, Geodise, and others. The hope is that 
the availability of such a tool will lower the barrier of entry for domain experts to 
advanced modeling and sampling techniques and facilitate the transfer of knowledge 
from surrogate modeling researchers. 



www.manaraa.com

4 ~ 4 4 C H A P T E R 4 



www.manaraa.com

Case Study: Low Noise Amplifier 

The path of precept is long, that of example short and effectual. 

— Seneca, Roman philosopher 

5.1 Introduction 

We now present a concrete case study that is a good illustration of why and how the 
SUMO Toolbox may be used. It concerns an investigation into the feasibility of gen
erating replacement metamodels for a Low Noise Amplifier (LNA). Previous investi
gations [142,267] have shown ANNs to be very promising for modeling admittance 
functions and noise figures when two or three design variables are considered, achiev
ing high accuracy for a minimal number of data points. Thus, the motivation for this 
case study is to investigate if these good results are maintained as the problem dif
ficulty and number of design variables is increased. In particular we wish to study 
how the accuracy of neural models scale in function of the number of design variables 
and number of data points. In addition we wish to investigate how this relationship 
compares with other popular surrogate model types such as rational functions, Support 
Vector Machines (SVM), Radial Basis Function (RBF) models, and Kriging models. 

5.2 Background 

An LNA is an electronic amplifier used to amplify very weak signals (for example, 
captured by an antenna). It is usually located very close to the detection device and is 
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frequently used in microwave systems like GPS. Thus an LNA is the typical first stage 
of a receiver, having the main function of providing the gain needed to suppress the 
noise of subsequent stages, such as a mixer. In addition it has to give negligible distor
tion to the signal while adding as little noise as possible [268], The performance figures 
of an LNA (gain, input impedance, noise figure and power consumption) can be deter
mined by means of computer simulations where the underlying physics is accurately 
taken into account. Each simulation typically requires about a minute, too long for a 
circuit designer to work with efficiently. Instead a designer could use a very accurate 
surrogate model (based on circuit simulations) to quickly explore how performance 
figures of the LNA scale with key circuit-design parameters, such as the dimensions 
of transistors, passive components, signal properties and bias conditions. The goal of 
the design process is to figure out one or more sets of design parameters resulting in a 
circuit which fulfills the specifications, i.e., constraints given on the performances. 

Obtaining the required circuit design parameters can be done through an approx
imation of the circuit performance figures based on one or more surrogate models. 
This is referred to as 'forward model ' of the circuit. A forward model can be either 
obtained via direct modeling of circuit performances (i.e., a one step approach) or by 
using intermediate surrogate models of a convenient set of behavioural parameters (e.g. 
admittances and noise functions) and compute performances via analytical equations 
in a post-processing step (i.e., a two step approach). This is illustrated in figure 5.1. 

Design Behavioral Performance 
parameters parameters parameters 

1 HIPP 1 . 1 
' Indirect modeling of 

performance parameters ' 

i 

Direct modeling of 
performance parameters 

Figure 5.1: Direct and indirect modeling of the LNA performance parameters 

In this chapter we are only concerned with the modeling of the behavioral parame
ters (indirect approach). The direct approach will be revisited in chapter 9. 

For this study, in order to keep the computation times manageable, we replace 
the expensive simulations by a first-order analytic model. This allows us to do a full 
modeling study. The results and conclusions of the case study are not affected by 
the use of analytical functions since the qualitative behavior is the same. Once the 
necessary insights have been gained, the next step is to model the simulation code 
directly. 

The functions that govern the approximate behavior of the LNA are given by equa
tions 5.1 to 5.9. The small signal representation that was used to derive these equations 
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is s h o w n in figure 5.2. 
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Figure 5.2: Small signal representation of the LNA 
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i n d u c t a n c e Lm, w i th W = 100 • 1 0 ~ 6 • 1 0 ^ ' m , Ls = 0.5 • 1 0 ~ 9 • 10^» H , / = (11 + 
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,, y i2
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a p p r o x i m a t e admi t t ances a re g iven b y : 

7 i i 

y\2 = 

ja>Css 

1 - co2CgsiLs+Lm) +jcoLsg„ 

gm 
1 - co2Cgs(Ls +Lm) +j(oLsg„ 

(5 .1) 

(5.2) 

T h e a p p r o x i m a t e input no i se -cu r ren t (yif„), o u t p u t no i se - cu r r en t (y i2
l4t), a n d the i r 

cor re la t ion ( p ) are def ined as : 

1 +fcoLsg„, 

co2CssLs 

JgsJn 1 - co2Cgs(Ls +Lm) +jcoL,g 

.Ids, in == 

Ids,out 

Jgsjn — 

1 - C02Cgs(Ls +Lm) +jCQL,g„, 

1 -co2Cgs(Ls+Lm) 

1 - a>2Cgs(Ls +Lm) +jcoLsg„ 

1 +ja>Lsg„ 

1 - co2CssiLs + Lm) +jcoLsg„ 

(5 .3) 

(5 .4) 

(5 .5) 

(5 .6) 
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gs,m I
2 • i% + \fdsjn\2 • 4 " 2 • M 0 . 4 / W ^ J V ^ 4 (5.7) 

yfiL = ylf^out |2 • i2
s + I/*,™, |2 • 4 - 2 • IM0.4fSs,out.a>out)y

/i2
s-i

2
ds (5.8) 

fgs,infgs,oul ' lgs + Jds,infds,out ' lds "^ "- 4 7 ' \Jgs,infcis,oul Jgs,oiitJds,in) y igs " f 
•2 

f ,•2 . ;2 

(5.9) 
The remaining parameters have been set to fixed, typical values: CO = 2?tf, gm = 1 • 

10-4WVGT A V - 1 , COS = 0.01 - WLV, 1*~ = 2 • 1 0 - 3 ^ p A 2 H z " 1 , 4 = 0 . 5 ^ p A 2 H z - 1 . 
The meanings are as follows: co is the angular signal frequency , gm is the M O S F E T 
transconductance, Cos is the gate-source capacitance, i2

s is the gate-source noise cur
rent spectral density of the MOSFET, and 4 i s m e drain source noise current spectral 
density of the MOSFET. 

A study of yi2
n in the 2 D case (focusing largely on Kriging) was carried out 

in [142], a more extensive study (covering y i2
n,\li

2
ut,y\\,y\2 and multiple model 

types) for the 3D case was done in [267]. Building on those previous results we now 
include all output parameters, increase the maximal number of input parameters to 6, 
and increase the max imum number of data points to 1500. 

5.3 Experimental setup 

For this problem, the model types we consider are ANNs, rational functions, RBF 
models , Least Squares SVMs (LS-SVM, implementation from [269]) and Kriging 
models (implementation from [270]). The A N N models are based on the Matlab Neu
ral Network Toolbox and are trained with Levenberg Marquard backpropagation with 
Bayesian regularization [271,272] (300 epochs). The topology and initial weights are 
determined by a Genetic Algorithm (GA). The complexity of the rational functions is 
determined by two algorithms, a custom stochastic hill climber (HC) or a GA. A GA 
is also used to set the regression/correlation functions of the RBF models, the correla
tion parameters of the Kriging models (the regression function is set to linear and the 
correlation function to Gaussian) and the hyperparameters of the LS-SVM models (an 
RBF kernel is used). Both the LS-SVM and Kriging hyperparameters are searched in 
log\a space with a e [—4,4], y e [—5,5] and 6, e [—5,3]. 

For the complex outputs (y\i,y\2,p) rational and RBF models are used to model 
the complex data directly while ANN, LS-SVM and Kriging are used to model the real 
and imaginary parts separately in separate models (since the implementations available 
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only work in W). For the noise outputs (y i2
n,y i2

uf) rational functions, ANN, LS-
SVM and Kriging are used. The SUMO Toolbox supports many other model types and 
hyperparameter optimization algorithms, yet these settings were used since experience 
showed they gave good results. A full discussion of the model types, optimization 
algorithms, genetic operators, etc. is out of scope for this chapter. Such details can be 
found in [273,274] . 

In order to reliably gauge the quality of the models, a root relative square error 
(RRSE) 

RRSE(y,y) = J ^7^. % C5-^) 
. VUiyi-yf 

on a dense validation grid is calculated. y,y,y are the true, predicted, and mean 
true response values respectively. Intuitively the RRSE indicates how much better an 
approximation is than the most simple approximation possible (the mean) [25]. The 
size of this grid is 51'3', 15 r f, 1 ld,ld,5d for input dimension d = 2 , . . ,6 respectively. 
Remark that we use a validation set since we want to accurately and objectively study 
the usefulness of A N N models. In general such a grid is not available and a cross 
validation measure (or similar) must be used. 

Besides the RRSE we also recorded the Average Relative Error (ARE): 

^ ( y , y ) - i | ^ (5.U) 

and the Maximum Relative Error (MRE): 

MRE(y,y) = max ( ^ ~ ^ ' ) (5.12) 

It is important to note that both the MRE and ARE are undefined for>v = 0 and can 
be numerically unstable for y,- close to 0. Thus, in cases where the response value is 
small the MRE and ARE errors will be inflated. Care should thus be taken when inter
preting the errors in the next section. The sampling settings were as follows: an initial 
optimized Latin hypercube design (constructed using the method described in [242]) of 
size 20 (10 in the 2D case) is used, augmented with the corner points. Each iteration a 
maximum of 50 (1 0 in the 2D case) new samples are selected using the LOLA-Voronoi 
active learning algorithm. The LOLA-Voronoi algorithm is a state-of-the-art sampling 
method described in [275] that works in both the M. and C domains. Its strengths are 
that it scales well with the number of dimensions and makes no assumptions about the 
underlying problem or surrogate model type. At the same time it is able to automati
cally identify non-linear regions in the domain and sample these more densely. In this 
way the number of computationally expensive simulations can be minimized. 

The termination criteria were determined by the application constraints and chosen 
as follows: a maximum of 1500 sample points or a RRSE validation error of 0.01. 
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Note that initially an error of 0.05 was deemed acceptable, however, in order to push 
the methods further we enforced a stricter requirement of 0 .01 . All 185 tests were run 
on the CalcUA cluster which consists of 256 Sun Fire V20z nodes (dual A M D Opteron 
with 4 or 8 GB RAM), running SUSE Linux, Matlab 7.4 R2007a, S U M O Toolbox v5.1 
(settings not mentioned were kept to their defaults), administered by Sun Grid Engine 
(SGE). 

5.4 Results 

Table 5.1 summarizes the different results (the output ranges are given in table 5.2). 
For each output and each dimension the tables shows the errors of the model type that 
performed best (lowest value of RRSE). To help interpret the errors, the range of the 
output (determined by the validation grid) in each case is also listed. Figures 5.3, 5.4, 
5.5, and 5.6 show how the accuracy scales in function of the number of samples and 
number of input variables. 

0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400 1600 
Number of samples Number of samples 

Figure 5.3: RRSE for the input noise-current \l i2
n (left: ANN, right: LS-SVM) 

0 200 400 600 800 1000 1200 1400 1600 0 2 u 0 400 600 800 1000 1200 1400 1600 
Number of sampleb Number of samples 

Figure 5.4: RRSE for the output noise-current \Ji2
ut (left: ANN, right: LS-SVM) 

From table 5.1 it is immediately clear that the A N N models perform best on all 
real valued outputs. For the 2D case the difference with Kriging, LS-SVM and ratio
nal functions, are minimal but for all the other dimensions the difference is easily 1 
order of magnitude in favor of ANN. This is nicely illustrated in figure 5.4 (the plot for 
Kriging is not shown but is almost identical to the one for LS-SVM). The rather poor 
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Figure 5.5: RRSE for yu (left: Rational GA, right: RBF) 
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Figure 5.6: RRSE for yl2 (left: Rational GA, right: RBF) 

performance of Kriging is to be expected given the previous discussion in [142]. There 
is a close correspondence between SVM theory and Gaussian Process theory [127] 
yet results for LS-SVMs remain surprising given the many excellent results reported 
in literature (e.g., [168]). Nevertheless, these results arc consistent with the authors ' 
previous experiences on metamodeling problems with adaptive sampling. One would 
think the hyperparameter optimization algorithm would be to blame, yet previous tests 
with other algorithms (including Particle Swarm Optimization (PSO), grid search, pat
tern search and DIRECT), a brute force search through the hyperparameter space, and 
a comparison with manually determined settings by an expert give essentially the same 
results. In addition the intelligent restart strategy used by the SUMO Toolbox [142] 
adds an extra safety net to ensure that the model parameter space is searched thor
oughly. 

On the other hand the ANN models perform very well, failing to reach the 0.05 

4v^ error target only in thejyi \ ,y\2 cases for 5-6D and the \lifn,\f i'iu( cases for 6D. For ex

ample, the error target is reached on yi2
u/ in the 5D case with roughly only 4.3 samples 

per dimension. For p,eahpimag the same is true with only 3.3 samples per dimension. 

In addition the model complexity is quite small, starting from an initial complexity of 

2 units in each of the 2 hidden layers, the complexity of the final models generated by 

the SUMO Toolbox did not exceed 500 weights. Together with the regularization this 

had the added benefit of keeping the responses smooth, capturing the global structure 

well (an important application requirement). A plot of the final ANN model of y i~n 
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for the 4D case is shown in figure 5.7. For comparison the corresponding LS-SVM 
model is shown in figure 5.8. The LS-SVM plot shows how the LS-SVM model is 
able to capture the rough structure of the response but fails to capture and track the 2 
resonances along the Lsn = — 1 axis (which move and grow sharper as the other param
eters are varied). In addition, the LS-SVM models produce unwanted ' r ipples ' in some 
areas. In contrast, the A N N model is able to track the resonances quite well given the 
relatively sparse data distribution, while at the same time keeping the response smooth 
in the rest of the domain (thanks to the Bayesian regularization). 

Ln=-1 Ln=0 Ln=1 

100 100 100-, 

Lsn - 1 - 1 Wn 

Figure 5.7. Final 4D ANNmodel for \Ji2
ut (4-23-16-1 network, 

L„m = o,vGTn = o,/„ e {-i,o, i } ; 

Ln=-1 Ln=0 Ln=1 

100, 100, 100 

u> 50 

Lsn -1 - 1 W n 

Figure 5.8. Final 4D LS-SVM model for = o,vGT„ = o,f„e {-i ,o, i>; 

For the admittances y\\ ,y\ 2 the accuracy of A N N models is roughly the same as 
the rational models, yet they require substantially more data points. However, this is 
only true up to 4 dimensions. For 5 and 6 dimensions, RBF models tend to do better 
than the rational functions (though the accuracy of the final models is still very poor), 
and the performance difference with ANNs is actually quite small. 

The plots of the magnitude of y\2 of the final rational and RBF models are shown 
in figures 5.9 and 5.10. Interestingly the structure of the plots is very similar to the 

fc 
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plots for f and y iout- Figure 5.9 shows a very good approximation, the response is 
smooth and shows a crisp resonance behavior. In contrast, the RBF model shown in fig
ure 5.10 shows the same problems as the LS-SVM model in figure 5.8: the resonances 
arc not captured sharply and the model suffers from unwanted ' r ipples ' . 

Ln= Ln=0 Ln=1 

Figure 5.9' Final 4D rational model for \y\2\ (Lmn — 0,VGTn = 0, f„ €E {—1,0,1}_) 

Ln=-1 Ln=0 Ln=1 

Lsn -1 -1 wn Lsn -1 -1 vVn L s n -1 -1 Wn 

Figure 5.10: Final 4D RBF model for [y l2| (L„m = 0,VGTn = 0,f„ e {-1,0, I}) 

Interestingly, the results for the correlation output p are somewhat different. There, 
modeling real and imaginary parts separately using ANNs clearly outperforms a direct 
approach using rational models. However, again for the 5D and 6D cases the results 
are much closer, though ANNs maintain a small margin. Good performance of the 
rational functions on the admittances is to be expected since j i 1 and .y 12 arc themselves 
explicit rational functions. For p , the functions involved arc not strictly polynomials 
so this could explain the discrepancy. 

If we consider figure 5.6 the large gap between the 4D and 5D case for rational 
models is surprising. The authors suspect the poor scalability is due to the optimiza
tion algorithm (GA or HC) used to set the complexity (orders of polynomials, which 
variables belong in the denominator, etc.). As the dimensionality increases, there is less 
information per dimension yet more room for complex functions (the size of the search 

file:///y/2/
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space increases exponentially). Thus the rational models generated by the algorithms 
involved quickly suffer from poles and have problems generating smooth responses. 
No significant difference was detected between the GA and HC algorithms, for this 
more runs would be necessary. Improving the algorithms to better combat overfitting 
should result in better scalability. However, the hyperparameter optimization algo
rithm is only part of the problem. As the dimensionality is increased, eventually the 
sample budget constraints will have to be relaxed if accurate global models are still 
required (asuming a non-trivial response to model) . This flows directly from the curse 
of dimensionality and is true for all modeling approaches. 

The algorithm for the RBF models is more robust but still performs very poorly. If 
we study the plots it seems the models have difficulty capturing the local non-linearities 
in the function. Roughly speaking the plots seem to indicate that, either the models are 
too smooth (thus missing important features) or they are too non-linear (capturing the 
features but failing to fit the smooth parts). This seems to be related to the problems 
the authors identified with Kriging models in [142] but a closer investigation is needed. 

5.5 Conclusion 

In this chapter we presented a comparison of the accuracy and scalability of different 
metamodeling methods on the complex task of modeling a whole LNA RF circuit 
block. ANNs have been found to perform very well overall, though rational functions 
should still be preferred if the underlying structure is rational and the dimensionality is 
low. 

Some insight into the accuracy - number of samples - dimensionality relationship 
has been gained but more work remains. The ideal case would be to derive an empirical 
formula (for this and similar problems) that can easily be used to predict the number 
of data points (simulations) required to obtain a certain accuracy with a given model 
type. As a second step this formula should also take the required model complexity 
(i.e., number of weights in the case of ANN) into account. Such formulae (even if just 
a rough indication) would be extremely useful in the application of these methods in a 
real world, industrial setting. 

In addition the possibility of including domain specific knowledge into the neural 
models needs to be studied (building upon the work by Zhang [74]). This should 
improve the results in higher dimensions. 

t . 
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Table 5.2: Response range for each output 
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Integrating Distributed Computing 

/ think there is a world market for about four or five electronic computers. 

- Thomas Watson, IBM, 1 943 

6.1 Introduction 

While the time needed for one evaluation of the original simulator is typically in the 
order of minutes, hours or even days, the surrogate function, due to its compact math
ematical notation, can be evaluated in the order of milliseconds. However, the process 
of constructing accurate surrogates still requires evaluations of the original objective 
function. Therefore, if the process requires, say, 180 function evaluations and each 
evaluation takes 5 hours, the rate at which the design space can be explored is still 
relatively low. Such a simulation cost is of course unavoidable if a data based approx
imation method is used. The cost can be justified since (1) building a global surrogate 
is a one-time, up-front investment (assuming the problem stays the same), (2) adaptive 
modeling and adaptive sampling can drastically decrease the required number of data 
points to produce a good model and (3) distributed computing can reduce the "wall-
clock" execution time by running simulations in parallel. 

In this chapter we are particularly interested in the last point. The past two decades 
have seen the development of cheap Beowulf type clusters, computational grids, and 
virtualized clouds. The performance of which has come to rival classic state-of-the-
art standalone supercomputers [276,277] . With storage and computing power having 
become commodities it is only natural to consider how the surrogate modeling pro-
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cess can benefit from these evolutions. There are four main themes that underlie the 
motivations for this chapter: 

1. improved model accuracy 

2. reduction of the overall wall-clock time 

3. increased data availability 

4. increased interoperability 

These four themes are closely related and can be mapped onto four concrete levels of 
integration: modeling level, resource level, scheduling level, and service level. The 
remainder of this chapter will discuss the necessity of these levels in more detail and 
provide two illustrative examples. 

6.2 Distributed computing 

While the developments that led to grid and cloud computing only span the last 20-30 
years, the fundamental use case and need can be traced back to the early 1960s [278]. 
During that time computing and networking pioneer J.C.R. Licklider, originally an 
experimental psychologist at MIT, worked on psychoacoustics and was concerned with 
the amount of data he had to work with and the amount of time he required to organize 
and analyze his data. He developed a vision of networked computer systems that would 
be able to provide fast, automated support systems for human decision making [279]: 

It will possibly turn out that only on rare occasions do most or all of 
the computers in the overall system operate together in an integrated net
work. It seems to me important, nevertheless, to develop a capability for 
integrated network operation f...f If such a network as I envisage nebu
lously could be brought into operation, we could have at least four large 
computers, perhaps six or eight small computers, and a great assortment 
of disc files and magnetic tape units — not to mention remote consoles and 
teletype stations — all churning away 

Licklider played an instrumental role in the development of ARPANET, which through
out the 1970s (with the development of ethernet) and 1980s led to the development of 
the Internet. 

In parallel with the developments in networking and communication there was 
intense research on hardware and software applications for parallel computing. The 
focus was on algorithms, programs and architectures that efficiently enabled parallel 
execution within a local machine. Key developments from this time (late 1980s, early 
1990s) include the Parallel Virtual Machine, Message Passing Interface (MPI), High 
Performance Fortran, and OpenMP [278]. However, as application developers began 
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to develop large-scale codes that pushed against the resource limits of even the fastest 
parallel computers, some groups began looking at distribution beyond the boundaries 
of a single machine. Driven by large multi-disciplinary research challenges, the work 
on execution environments for parallel machines and distributed memory architectures 
evolved into the concept of gridcomputing which attained its peak at the turn of the 
century. 

The grid grew from extending parallel computing paradigms from tightly coupled 
clusters to geographically distributed heterogeneous systems. At the same time acting 
as a platform for the integration of loosely coupled applications and for linking dis
parate resources (storage, computation, visualization, instruments). The first modern 
grid is generally considered to be the Information Wide-Area Year (I-WAY), devel
oped as an experimental demonstration project for SC95. This led the way to popular 
infrastructure projects like Globus [280] and Legion [281] that explored approaches for 
providing basic system-level grid infrastructure. This infrastructure allowed resources 
to be coordinated to provide transparent, dependable, pervasive and consistent comput
ing support to a wide range of applications. These applications can perform either dis
tributed computing, high throughput computing, on-demand computing, data-intensive 
computing, collaborative computing or multimedia computing [282]. 

In recent years the term cloud computing has become dominant in the distributed 
computing literature. The definition given by Foster [283] is 

Cloud computing is a large-scale distributed computing paradigm that is 
driven by economies of scale, in which a pool of abstracted, virtualized, 
dynamically-scalable, managed computing power, storage, platforms, and 
services are delivered on demand to external customers over the Internet. 

Central to cloud computing is the concept of virtualization, abstracting the platform 
specific characteristics of a hardware architecture through a software virtual machine. 
Fundamentally, the idea is that a cloud user can configure a fully customized virtual 
machine and have it run and scale transparently and dynamically on a virtual 'c loud ' 
of resources. There is no longer the limitation of one operating system having to cor
respond to one physical machine. Leading IT companies such as Amazon, Microsoft, 
Google and IBM, have announced huge investments into the development of cloud 
computing services. Both the cloud and grid computing paradigms promise to deliver 
computing resources as a utility, similar to traditional utilities such as water, electricity, 
gas and telephony. In this model, users have unlimited access to services, regardless 
of where they are hosted or how they are delivered (utility computing). According to 
Armbrust et al. [284], three aspects are new in cloud computing: 

1. The illusion of infinite computing resources available on demand, thereby elim
inating the need for cloud computing users to plan far ahead for provisioning. 
The complexity of capacity planning (the process of determining the capacity 
needed to meet changing demands) is therefore reduced significantly. 
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2. The elimination of an up-front commitment by cloud users, thereby allowing 
companies to start small and increase hardware resources only when there is an 
increase in their needs. 

3. The ability to pay for use of computing resources on a short-term basis as needed 
(e.g., processors by the hour and storage by the day) and release them as needed, 
thereby rewarding conservation by letting machines and storage go when they 
are no longer useful. 

Foster et al. [283] argue that cloud computing not only overlaps with grid computing, it 
has indeed evolved out of grid computing and relies on grid computing as its backbone 
and infrastructure support. The evolution has been a result of a shift in focus from an 
infrastructure that delivers storage and compute resources (such is the case in Grids) 
to one that is economy based aiming to deliver more abstract resources and services 
(such is the case in Clouds). 

6.3 Modeling level 

As stated in the introductary section, there are different ways concepts from distributed 
computing can be integrated into the surrogate model generation process. The first is 
on the model generation level. 

The largest computational bottleneck in the surrogate modeling process usually is 
performing the necessary simulations. However, for relatively short simulations and 
expensive model types, the model generation cost can come to rival or even exceed the 
simulation cost. A typical example are neural networks, the use of backpropagation 
based fitting methods making them slow to train. This cost is amplified futher if an 
expensive (in terms of function evaluations) hyperparameter optimization algorithm is 
used, or a resampling based model selection procedure like cross validation. Given 
the availability of commodity multi-core and multi-CPU hardware it makes sense to 
leverage these resources and employ parallelism to reduce the model fitting cost. Par
allelism may be applied within the model fitting routine itself (e.g., multi-threaded 
matrix inversion) or to fit multiple models simultaneously (e.g., during a population 
based hyperparameter optimization routine). Early work in this respect can be found 
in [285]. At this level there is usually no need to move outside the address space of the 
local machine since model training times are typically less than a minute. The network 
overhead would be too great. However, in cases where there is a lot of data, or the 
model fitting process is complex enough a distributed approach can be warranted. 

Currently, the SUMO Toolbox allows for parallelization during the model building 
process in the following places: 

• in any population based hyperparameter optimization method (GA, PSO, Differ
ential Evolution, etc.) 
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• in £-fold cross validation 

• during the management of the best model trace (cfr. section 4.5.4.5) 

• when fitting an ensemble model 

• within the implementation of some model types (e.g., Kriging) 

Basically any place where more than one model needs to be fitted is a candidate for 
parallelization. Of course parallelization need not be restricted to models, complex 
sample selection algorithms may also benefit from parallelization. 

In the S U M O Toolbox this kind of parallelization is made possible by the Matlab 
Parallel Computing Toolbox. If the local scheduler is available it allows for the parallel 
execution of Matlab code on a single machine. If also the distributed computing server 
is available, the same code can be transparently parallelized across a cluster, grid, or 
cloud of Matlab worker instances. This is illustrated in figure 6 .1 . 

Desktop System 

Parallel Computing Toolbox 

Local Workers 

( + H + ) 

( * M * ) 
( * H * ) 

Simulink, Blocksets, 
and Other Toolboxes 

MATLAB 

•\ r~ Computer Cluster 

MATLAB Distributed Computing Server 

Worlcers 

I 

J 

Figure 6.1: Graphical illustrati on of the Matlab parallel computing capabilities (Source: 
http://www. mathworks. corn) 

6.4 Resource level 

The most obvious and straightforward application of distributed systems to metamod
eling is of course to parallelize the simulations that need to be performed. Given 

http://www
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the SPMD (Single Program Multiple Data) nature of the problem this can be done 
quite easily. Many projects from surrogate based optimization have recognized this: 
Nimrod/O and Nimrod/G [286], the Visual Parametric Modeler developed as part of 
the Gridbus project [287], DAKOTA [88], GEODISE [288], the GIPSE toolset [289], 
ILab [290], and the work in [86,291-294]. 

Access to distributed resources is enabled through a software layer referred to as 
the middleware. The middleware is responsible for managing the resources (access 
control, job scheduling, resource registration and discovery, etc.), abstracting away 
the details and presenting the user with a consistent, virtual environment to work with. 
Major grid middlewares include Globus [280], Unicore [295], gLite [296], and BOINC 
[297]. 

In order to run different simulations in parallel, modeling software needs to trans
form requests to run a particular simulation into middleware specific jobs 1 . A graphical 
illustration of how the SUMO Toolbox solves this is shown in figure 6.2. The figure 
shows two ways to perform parallel simulation. If all simulations are done on a local 
multi-core or multi-CPU machine, the sample evaluator (cfr. section 4.5.3) maintains 
a pool of worker threads that enable multiple simulations to be performed simultane
ously. Such local parallelization may be preferred for practical reasons like licensing 
or ease of use. However, for larger scale problems full distribution will be required. 

In the distributed case, the workflow is a bit more complex. A SampleEvaluator 
subclass that supports distributed evaluation of the simulator code requires three sub
components: a distributed backend, a poller, and a result processor object. A different 
grid middleware will require different implementations of these three components. To 
explain their interaction, let us take a concrete example involving the Sun Grid Engine 
(SGE) [298] middleware that is used in the applications in section 6.7. In our setup we 
use the CalcUA cluster at the University of Antwerp. This is a shared cluster, managed 
by SGE and accessible via a remote headnode. Job submission/querying/... is only 
possible from the headnode, to which one must connect using SSH. 

Assume the toolbox is running on a local machine (not on the headnode). The flow 
of control is as follows (see figure 6.3): In step (1) the SUMO Toolbox control code 
passes the data points it needs simulated to the sample evaluator class. The sample 
evaluator wraps the passed points into generic Job objects, ensures all executables and 
dependencies are properly staged, and passes the Job objects to the distributed backend. 
The distributed backend then translates the generic Job object into SGE specific job 
submisison commands (i.e., qsub commands) in step (2). A Poller object is then started 
in step (3) that will continuously monitor the submitted jobs and detect when they finish 
(or fail). Since the cluster is only accessible through a remote headnode, steps 2-3 
occur transparently through an SSH tunnel that is setup and maintained by the SUMO 
Toolbox. Once a Job has been completed, the poller notifies a ResultProcessor object 

'Of course the simulation engine itself can be parallelized internally (e.g., through the use of MPI). This, 
however, goes beyond the scope of this chapter. 



www.manaraa.com

I N T E G R A T I N G D I S T R I B U T E D C O M P U T I N G 6-7 

Control 
Subsystem 

4' 

^5***^^e j^* ' * 

Figure 6.2: The SUMO Toolbox allows for the parallel execution of simulations. This may be 
done locally (on the same machine as the modeling) or on a cluster or grid of machines. 

(step (4)) that retrieves the simulation results, does some sanity checking, and returns 
the completed results to the modeling code (through the output queue) in step (5). All 
this is of course done behind the scenes, the user need only provide some credentials 
and specify the right sample selector in the configuration file. 

Thus, extending the SUMO Toolbox with a new grid or cloud computing sample 
evaluation backend (e.g., for the metascheduler GridWay [299]) can be done by pro
viding a new {Distributed Backend, Poller, Result Processor] triplet. 

As an aside, requests for data point evaluations only occur at the end of each mod
eling iteration. The model generation and selection subsystems run sequentially since 
Matlab only has a single thread of control. This means that the evaluation backend 
must be kept busy while the modeling loop is executed. Thus, in order to ensure full 
utilization of the distributed resources, the number of points requested for evaluation is 
not fixed but varies dynamically depending on the number of available nodes and the 
average time for one simulation (taken over a sliding window) and the duration of one 
modeling iteration. 
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Figure 6.3: Evaluating data points (simulations) through a Sun Grid Engine administered 
cluster, accessible through a remote headnode. 

6.5 Integration: Scheduling level 

Simply running simulations in parallel already results in a significant decrease of the 
surrogate model generation time. Performance can be improved further if the intelli
gence of the sample evaluator (and associated queues) is increased. Remark that not 
all data points are equally important, a partial ordering exists. For example, data points 
lying close to interesting features (e.g., extrema, domain boundaries), or far from other 
data points should have a higher priority. These priorities are assigned by the sample 
selection algorithm(s) (cfr. section 4.5.2) and should be reflected in the scheduling 
decisions made by the sample evaluator and distributed backend. This type of integra
tion is more difficult than the previous one since it requires a close interplay between 
the sample selection, model building and sample evaluation components. In particu
lar it is important to keep the sample evaluation queue and the grid middleware queue 
filled, without overloading it with points that may become less interesting in the next 
modeling iteration. 

The current version of the SUMO Toolbox uses a straightforward priority queue 
based on the sample point priorities in order to make scheduling decisions. This is 
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already a good improvement but designing a good priority management algorithm that 
remains valid across multiple sampling iterations is still an open research problem. In 
addition, ideally, the sample evaluator should integrate seamlessly with the grid infor
mation system used (e.g., Ganglia [300]). Combining knowledge on queue availability, 
system load, disk usage, network traffic, ... with data point priorities would allow the 
sample evaluator to achieve an optimal job — host mapping (i.e., the data points with 
the highest priority should be scheduled on the fastest nodes). 

6.6 Integration: Service level 

The previous three subsections exemplify the main reasons for traditionally turning to 
grid computing or distributed computing in general: computational power. However, 
the past few years Service Oriented Architectures (SOA) have become an increasingly 
popular (if not dominant) way to think about the grid or cloud. In this regard the 
distributed system is regarded as a heterogeneous collection of services, where each 
service provides access to a particular resource. Examples include services provid
ing access to: a printer, a high performance numerical library, storage space, or CPU 
power. Users can connect to these services using standard technologies such as Apache 
River, Jolie [301], or SOAP and use them as part of complicated workflows. This is 
illustrated in figure 6.4. 

In this sense, "automated construction of surrogate models" is a prime example of 
a service that a scientist or engineer can use to delegate surrogate model construction 
to. The advantages are obvious: there are no setup or maintenance costs, interfacing 
is straightforward, and horizontal scalability can easily be achieved. This allows for 
an easier integration of the surrogate model construction process into the larger design 
process, enhancing productivity. 

A good example of such a SOA framework or Problem Solving Environment (PSE) 
[302] is the Geodise framework developed at the University of Southampton [4,288] or 
the problem solving environment discussed by Parmee et. al. [91]. The latter describes 
the initial development of the data modelling and search, exploration and optimisation 
processes of a Grid-enabled problem solving environment. This environment will en
able a client to access coupled computational components sited at different "centers of 
expertise". Each center offers a data generation and analysis approach that aids a better 
understanding of the design domain whilst providing a route to the identification of ap
propriate high-performance design solutions. The intention is to support satisfactory, 
remote problem definition that leads to the selection and application of appropriate de
sign search, exploration and optimization techniques. This should occur seamlessly so 
that the client is unaware that these processes are to be undertaken at different sites. 
Commercial tools that operate at this levels include ModelCenter and iSight. 

Integration at this level is primarily a matter of implementation. At time of writing 
there is no readily available code that integrates the SUMO Toolbox in such a SOA. 



www.manaraa.com

6-10 CHAPTER 6 

£ ® 

Figure 6.4: Service Oriented Architecture 

But adding the necessary hooks (e.g., based on standard webservices, Apache River, 
or other enabling technology) to make this possible should not be difficult. 

6.7 Applications 

In this section we discuss two test problems to illustrate the discussions from the pre
vious sections. We take a simple 2D analytical function, and a real world modeling 
problem from biophysics. 

6.7.1 Analytical function 

We use the Academic2D example problem from the SUMO Toolbox. It implements 
the following function defined on [— 1, l ] 2 : 
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A plot of the function is shown in figure 6.5. 

Figure 6.5: 2D analytical test function 

6.7.1.1 Surrogate modeling 

In this simple, illustrative example, the goal is to reproduce this analytical function 
with a minimum number of data points. As the model type we shall use ordinary Krig
ing with the (Gaussian) correlation parameters being determined through optimization 
of the likelihood. Internally the Kriging plugin also makes use of the model level par
allelization features described in section 6.3. Since we are dealing with an artificial 
problem, we make the data more expensive by adding an artifical sleep of 10 minutes 
to each function evaluation. We know from experience that ordinary Kriging requires 
about 150 points to capture this function accurately. This means that traditional serial 
execution of the code will take about 25 hours. 

To reduce this cost we illustrate the use of the SGE based sample evaluator de
scribed in section 6.2 and illustrated in figure 6.3. From a user point of view this simply 
means setting the correct id in the toolbox configuration file and setting the usemame, 
host URL, and remote working directory options. Authentication, job submssion. mon
itoring and retieval happens transparently. In our setup we use the CalcUA cluster at 
the University of Antwerp. This is a shared cluster of 256 Sun Fire V20z nodes (dual 
A M D Opteron 250, 2.4 GHz). To make testing easier we use the fast queue consisting 
of 20 nodes instead of the (heavily loaded) main queue of 230 nodes. 
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All other options are kept to their default values (as defined in v6.2.1). Higher 
priority samples (as determined by the sample selection algorithm) will be scheduled 
first. 

6.7.1.2 Results 

Sample evaluation time. 
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Figure 6.6: SUMO profiler showing the simulation time for each sample point (analytical 
example). The spikes are due to points having to wait in the SGE queue before being 

scheduled. 

The evaluation time for each point is shown in in figure 6.6. Figure 6.7 shows the 
elapsed wall clock time during the modeling process. From this we see that the total 
time is 150 minutes or 2.5 hours. Compared to pure serial execution, this is effectively 
a 10-fold speedup. The 10-fold speedup can also be seen from the node utilization 
profiler which tracks how many points are running concurrently (figure 6.8). 

6.7.2 Biophysical Application 

This application comes from biophysics and concerns the modeling of the tympanic 
membrane (eardrum) in the human ear. Its place in the overal anatomy of the human 
ear is shown in figure 6.9. This section draws from [303] where a detailed overview of 
this application is given. 
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Figure 6.7: SUMO profiler showing the elapsed wall clock time for the analytical example. The 
toolbox terminates after 2.5 hours, 1 Ox faster than pure sequential execution. 

6.7.2.1 Background 

Correct quantitative parameters to describe tympanic membrane elasticity are an im
portant input for realistic modeling of middle ear mechanics. However, so far these 
have not been determined accurately. Current finite element models are mainly re
stricted to acoustical sound pressures and low acoustical frequencies, and good data 
for the mechanical properties of the tympanic membrane are still lacking. It is known, 
however, that tympanic membrane elasticity has a significant influence on the resulting 
output [303]. 

Thus a setup was developed to determine tympanic membrane elasticity in situ. The 
measurement method consists of doing a point indentation perpendicular on the mem
brane surface; measuring the indentation depth, resulting force and three-dimensional 
shape data; simulating the experiment with a finite element model and adapting the 
model to fit the measurements using optimization procedures. 

The tympanic membrane sample (in this case obtained from a rabbit) was placed 
on a translation and rotation stage, a schematic drawing is shown in figure 6.10. Inden
tations in and out in a direction perpendicular to the surface membrane were carried 
out using a stepper motor with indentation depths up to 2 mm. The resulting force was 
measured with a load cell and the exact indentation depth was assessed with a Linear 
Variable Differential Transformer (LVDT). 
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Figure 6.8: SUMO profiler showing the estimated utilization of the shared compute nodes 
during the modeling of the synthetic function. 
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Figure 6.9: Anatomy of the human ear (Source: Wikipedia) 
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(5) J 

Figure 6.10: Schematic drawing of the point indentation setup: (1) translation and rotation 
stage, (2) tympanic membrane sample, (3) needle connected to a load cell, (4) stepper 

motor and (5) Linear Variable Differential Transformer. 

In order to construct a model, an LCD-Moire profilometer was used to obtain the 
three-dimensional shape of the membrane before and during indentation. On the basis 
of these Moire shape images a highly detailed non-uniform finite element mesh was 
created. In the needle indentation area and in the manubrium neighbourhood, mesh 
density was increased. This is illustrated in figure 6.11. The tympanic membrane was 
modeled as a linear isotropic homogeneous elastic material which is described with 
two independent elastic parameters: the Young's modulus E and Poisson's ratio v. 
The numerical simulations were performed with the finite element code FEBio, which 
is specifically designed for biomechanical applications. 

strain strain 

(b) Superior view 

Figure 6.11: Finite element model of the tympanic membrane with indentation. The number of 
membrane shell elements equal to 5988. The effective strain in the point indentation 

area after indentation rises up to approximately 15%. 

Determining the value of the linear elasticity parameters is done by minimizing 
the discrepancy between the model and the experimental measurements. Namely, by 

manubrium 

point indentation 

(a) Posterior view 
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calculating 

argmin (error force) with (6.2) 

E.m 

1 N 

errorforce = — ̂ ml{Fexp(qj) - Fmod(qj))2 (6.3) 
/ V 7 = 1 

N is the number of measured points, qj the indentation depth, FeXp(qf) the experi
mental force and Fmoejiqj) the simulated force. 
6.7.2.2 Surrogate modeling 

In [303] the infill infrastructure of the SUMO Toolbox was used to optimize errorforce-
In this chaper we are now interested in capturing the full 2D landscape defined by 
errorjorce. Again we use the ordinary Kriging plugin for this purpose. The added diffi
culty here was that sometimes the FEBio code did not converge properly, leading to a 
noisy surface with potential outliers. For this reason the Kriging plugin was also con
figured to optimize a parameter X together with the correlation parameters. X controls 
the degree of interpolation of the Kriging model, with X = 0 meaning exact interpo
lation. All other settings were again kept to their defaults, with only the initial design 
(an optimal Latin Hypercube) reduced to 5 points instead of 25. 

6.7.2.3 Results 

A plot of the final model of errorforce after 920 samples is shown in figure 6.12. Figures 
6.13, 6.14, and 6.15 show the sample evaluation time, estimated speedup over serial 
execution, and node utilization respectively. The average simulation time is about 25 
minutes (remember that this includes internal SGE queueing time). As can be seen 
from figure 6.15, the toolbox will always try to maximize the amount of nodes used. 
At the same time taking care not to have too many waiting or pending points, since 
once they are submitted they can no longer be replaced with potentially more useful 
points. The resource usage will expand or contract depending on node availabilities. 
The speedup over serial execution varies from time to time, ranging from about 3 to a 
peak of 11. 

6.8 Conclusion 

There are various levels at which the surrogate modeling process can benefit from dis
tributed resources and serive oriented architectures. Most of the work so far has been 
done on the most obvious level of integration: parallization of the simulations them
selves. The challenge here is interfacing with the different middlewares in a flexible, 
extensible manner. Each middleware has its own characteristics and semantics which 

k 
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Figure 6.12: Kriging surrogate of errorft 
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Figure 6.13: SUMO profiler showing the simulation time for each sample point (biophysics 
example). Note that this time also includes time spent in the SGE queue. 

makes it difficult to support different middlewares in a transparent way. Luckily work 
on different meta schedulers (e.g., GridWay, ProActive) and standardization efforts 
(CoG kit, DRMAA, ...) are underway to tackle this problem. 

Less work has been done on the higher levels of integration. In particular there is 
still room for improving the priority management policy and integrating the resource 
information system with the scheduler. Integration at the service level by exposing 
functionality through well defined web service APIs is also a topic of further work. 
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Figure 6.14: SUMO profiler showing the estimated speedup over serial executionfor the 
biophysics example. 
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Figure 6.15: SUMO profile?' showing the estimated utilization of the shared compute nodes 
during the modeling of the biophysical example. 
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Evolutionary Model Type Selection 

It is not the strongest of the species that survives, nor the most intelligent 
that survives. It is the one that is the most adaptable to change. 

— Charles Darwin 

Recall from the discussions in chapters 2 and 3 that the primary users of global surro
gate modeling methods are domain experts and engineers. Few of these will be experts 
in the intricacies of efficient sampling and modeling strategies. Their primary concern 
is obtaining an accurate replacement metamodel for their problem as fast as possible 
and with minimal overhead. The details involved in model selection, model parameter 
optimization, sampling strategy, etc. arc of lesser or no interest to them. Thus any 
automation that can be introduced into the surrogate modeling process would be very 
helpful. In this spirit, this chapter explores an automated way to help answer the always 
recurring question from domain experts "Which approximation method is best for my 
data? ". An evolutionary algorithm is presented that combines automatic model type 
selection, automatic model parameter optimization, and sequential design exploration. 

7.1 Background 

Arguably the hardest problems in science and engineering are those that involve mim
icking or understanding biological systems: auto-correction during DNA transcription, 
self organization, language processing, vision and cognitive reasoning. The complex
ity of such systems is staggering, yet at the same time their implementation has often 
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turned out to be breathtakingly elegant. Confucius' dictum rightfully comes to mind: 
A common man marvels at uncommon things; a wise man marvels at the common
place". The mechanism nature has used to achieve this is evolution through natural 
selection, a theory proposed and formalized by English naturalist and meticulous ex-
perimentor Charles Darwin in his 1859 seminal publication On the Origins of Species. 
While Darwin is rightfully accredited with laying the foundations of modern evolu
tionary biology and invalidating the contemporary theories on the hierarchical nature 
of species organization, various evolutionary ideas had already been proposed at the 
time. The most well known example being the work by Alfred Russel Wallace. The 
theory on adaptation through natural selection seems conceptually very simple, yet the 
mental leap required to fathom its far reaching implications is considerable. Contem
plating how deep its influence reaches out, it actually becomes hard to fault Darwins' 
Victorian contemporaries for their outrage. It took until the 1930s and 1940s for its 
full significance to be accepted, helped by the re-discovery of the work by Mendel in 
1900. 

Inspired by the complexity of the problems evolution through natural selection 
seems to have solved, Man has ever since attempted to (crudely) replicate this process 
in the lab and virtually on computers. Though the first personal computer (the IBM 
5150PC) did not appear until 1981 and the computing paradigm was still very new, the 
Norwegian scientist Nils Aall Barricelli was already applying it to to the simulation 
of evolution in 1954. Thovigh many researchers picked-up on the idea, it wasn' t un
til work in the early 1970s, by researchers at the University of Michigan led by John 
Holland, that the use of evolution as a problems solving method became widely rec
ognized. Since then, evolutionary algorithms (EA) have been widely used in many 
diverse domains with applications ranging from language processing and artificial life? 
to hull optimization in aerospace. 

Within this chapter we build on this work and apply some of the concepts involved 
to the problem of surrogate model type selection. 

7.2 Biological Foundations 

Since EAs were inspired by processes in nature, appreciation of these mechanisms is 
necessary. Given a population of organisms, evolution can occur only if the following 
two conditions are satisfied: 

1. in the population there must exist variation for some trait and this variation must 
be heritable. Examples are beak size, skin complexity, eye color, etc. 

2. There must be differential survival and reproduction associated with the posses
sion of that trait. 

The first condition requires each trait to have a genetic basis (genotype), that this geno
type varies between individuals, and that it can be passed onto offspring. The second 
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condition states that the genetically encoded trait must have a phenotypic expression 
that incurs some advantage or disadvantage for survival and reproduction in an en
vironment. Together these conditions form the basis for adaptation through Natural 
Selection: 

/ have called this principle, by which each slight variation, if useful, is 
preserved, by the term Natural Selection. 

- Charles Darwin, The Origin of Species 

7.2.1 Heritable variation 

It cannot be stressed enough that variation must be heritable (the first condition for evo
lution). Each phenotypic effect must have a matching code in the organism's genome, 
and this code can be passed onto future generations. Traits with no genetic basis at all 
(acquired traits) play no role in evolution since they have no effect on offspring and 
are thus not susceptible to selection. The theory where acquired traits do play a role 
in evolution is known as Lamarckian evolution1 (versus Darwinian evolution) but no 
evidence for this theory has ever been found and the scientific consensus is that there 
never will be2 . 

While this genetic aspect may be obvious in retrospect, in Darwin's time it posed a 
great problem since he, unaware of Mendel's work in 1865. could not explain how traits 
were inherited or blended. It wasn't until Mendel's work on genetics was rediscovered 
in 1900 and reconciled with Darwinian evolution in 1930 that the foundations for the 
current theory modern evolutionary synthesis, or neo-Darwinism were laid. 

Of course, simply requiring that traits have a heritable, genetic basis is not enough 
to explain the enormous diversity of species that exist in the world. If each parent 
Would simply pass on an exact copy of its genes, there never would be any new varia
tion, the gene pool would remain static and no new species would arise. Therefore, as 
genetic information is passed onto offspring it undergoes mutation and. in some cases, 
recombination. 

7-2.1.1 Mutation 

Mutation is a change in the genetic information and can be caused by: 

• copying errors in the genetic material during cell division 

• exposure to ultraviolet or ionizing radiation 

As a historical sidenote, the inheritance of acquired characteristics is not the aspect of his theory that 
Lamarck himself emphasized, he simply took over the conventional wisdom of his time and grafted to it 
other principles like "striving" and 'u^e and disuse' T304]. 

"This, however, has never stopped its ideas being applied to solve engineering problems (e.g.. Memetic 
optimization 1305]) 



www.manaraa.com

7-4 C H A P T E R 7 

• chemical mutagens or viruses 

• deliberately under cellular control during processes such as meiosis or hypermu-
tation 

Mutation can occur in any bodily (somatic) cell, but it only contributes to evolution if it 
occurs in the germ cells responsible for reproduction (we only consider multi-cellular 
organisms, excluding plants). Such mutations are called germline mutations (versus 
somatic mutations). Mutation is a mechanism by which new information can be added 
to the gene pool. Figures 7.1 illustrates some examples of mutation. 

Type* of mutation 

Deletion Duplication Inversion 

k\ 

I 
Insertion 

n=£> 

OlWMW.H1. 4 

Translocation 

SDUrr. g«nom« fat 

Figure 7.1: Examples of mutation 

1.2.X.2 Recombination 

The second genetic operator is recombination, also referred to as crossover. It is only 
required for sexual reproduction (versus asexual). In humans, recombination occurs 
during meiosis, the process during which a diploid cell (a cell containing the full 46 
chromosomes, 23 from each parent) divides into four haploid cells, each containing 
only 23 chromosomes. During sex, some of these haploid cells will then recombine 
with haploid cells of the other sex to form a zygote, and eventually, a new individual. 

http://OlWMW.H1
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Recombination occurs during the Prophase I of meiosis, the chromosomes from each 
parent pair up and randomly exchange information through crossing over. The 23 
pairs then break-up again and the 46 chromosomes divide themselves randomly (but 
equally) over two new haploid cells, each containing only 23 chromosomes. These 
cells are then duplicated in a way similar to somatic cell division (mitosis) to form the 
final four haploid cells. An important feature of these four cells is that the combination 
of genes they carry on their 23 chromosomes is a unique mix of the genes present in 
the original single cell. 

Thus recombination is a mechanism that combines existing variation in the gene 
pool but cannot create new variation. Crossover is illustrated in figure 7.2. 

Source /wwwemc.mancopaedu 

Figure 7.2: Example of crossover 

7.2.2 Differential survival and reproduction 

Having heritable variation available for a trait is only one side of the equation. It is 
how the expression of this trait helps the organism gain reproductive success that drives 
evolution. The advantage of having a particular trait is completely determined by the 
environment (climate, geography, predators, available resources, number and species 
of other organisms, etc.) the organism finds itself in. Traits that make the organism 
better adapted to its environment, i.e., increase the chances of successful reproduction, 
will have a larger probability of being passed on to the next generation. 

The classical example is that of the Peppered Moth in England. Prior to 1800, the 
moth typically had a light pattern which camouflaged it against the light tree trunks and 
lichens they rested upon. With the advent of the industrial revolution, however, soot 
and other industrial waste darkened the trees and killed off lichens. The lightly col
ored moths had suddenly become more visible to predators, decreasing their chances 
of surviving until reproductive age. In contrast, the darker colored moths suddenly 
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found themselves more camouflaged and as a result their percentage of the population 
increased. 

When discussing such examples it is common to use the following terminology: 
"Natural selection selected against light color", "There is positive selective pressure 
for dark wings", etc.. To the uninformed reader this may seem like Natural Selection is 
a directed process, working towards some unidentified goal. Nothing could be further 
from the truth. At its core, evolution through natural selection is a stochastic process 
with no intrinsic direction or preference whatsoever. This sense of undirectedness 
implies that the solutions found by natural selection are by no means guaranteed to 
be optimal in any way. Or as Darwin, so vividly put it in a letter to his friend Joseph 
Hooker: 

"What a book a devil's chaplain might write on the clumsy, wasteful, blun
dering, low, and horribly cruel works of nature! " 

7.3 Evolutionary Algorithms 

7.3.1 History 

Given the success of evolution by natural selection, scientists were quick to try to 
replicate this success for man-made problems. The use of EAs concentrated on two 
domains: modeling and validation of biological evolution, and global search. This 
thesis is only concerned with the latter. 

The computer simulation of evolution dates back to the early 1950's by the Nor
wegian scientist Nils Aall Barricelli who was studying artificial life at the institute 
for advanced study in Princeton, NJ [306]. A few years later in 1958 the Australian 
quantitative geneticist Alex Fraser published his seminal work "Simulation of genetic 
systems by automatic digital computers". Fraser's efforts in the 1950s and 1960s had 
a profound impact on the development of computational models of evolutionary sys
tems. Another key player at the time was the American scientist Lawrence J. Fogel 
who is known as the father of evolutionary programming [307]. 

Though many researchers picked-up on the idea, it wasn' t until the early 1970s 
when John Holland et. al at the University of Michigan introduced genetic algorithms 
(GA) and Ingo Rechenberg and Hans-Paul Schwefel from the Technical University 
of Berlin introduced evolution strategies, that EAs became widely recognized. These 
areas developed separately for about 15 years and were joined by genetic programming 
in the 1980s (Stephen F. Smith (1980) [308], Nichael L. Cramer (1985) [309], D. 
Dickmanns (1987) [310]) and 1990s (John R. Koza [311]). 

EAs are part of a wider class of biologically inspired algorithms (sometimes re
ferred to as soft computing). Other members of this class include neural networks, 
fuzzy theory, Bacteriologic Algorithms, Harmony Search, Ant Colony Optimization 
and Particle Swarm Optimization. 
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7.3.2 Important remarks 
Before we continue, the reader should be reminded that EAs - like other soft com
puting techniques (e.g., neural nets) - are extreme simplifications of their biological 
counterparts and results/conclusions obtained in the artificial setting can usually not be 
generalized to the biological setting. In addition it cannot be stressed too strongly that 
an EA is not a random search for a solution to a problem. EAs use stochastic processes, 
but the result is distinctly non-random (better than random) [312]. Another common 
misconception is that EAs don't require any structure in the search space. This is def
initely not the case, especially if a recombination operator is involved. Finally, in the 
context of optimization EAs are often used with the argument that they are able to find 
the global optimum [313]. This is of course not true. An EA may increase the chance 
of finding a global optimum if adequate operators are defined (the importance of which 
many users underestimate) but it should never be blindly trusted to do so. 

7.3.3 Types 

Five major types of EAs can be identified [312]: 

1. Genetic Algorithms 

2. Evolutionary Programming 

3. Evolution Strategies 

4. Classifier Systems 

5. Genetic Programming 

Gray zones exist between the different classes but all share a common conceptual base 
of simulating the evolution of individual structures via processes of selection, recom
bination, mutation and reproduction. These processes are driven by the performance 
of the individual structures as defined by an environment (fitness function). The art 
of applying EAs is finding a good balance between exploration (global search) and 
exploitation (local search) when combining the different processes. In this thesis wc 
are concerned with genetic algorithms: a population of individuals, represented by 
their genome, is evolved through the use of selection, recombination (crossover) and 
mutation operators for a fixed number of generations. 

7.4 The Genetic Algorithm 

7.4.1 The Canonical GA 

The GA is probably the most well known EA and is used as an algorithm for global 
search, optimization being the most obvious application. The core algorithm, as intro-
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duced by Holland [314] is referred to as the Canonical Genetic Algorithm (CGA) and 
is presented in pseudo code below [312]: 

//start with, an initial time 
t : = 0 ; 

//initialize a random population of individuals 
initpopulation P(t); 

//evaluate fitness of all initial individuals of popul 
evaluate P ( t ) ; 

//test for termination criterion (time, fitness, etc.) 
while not done do 

//increase the time counter 
t : = t + 1 ; 
//select a sub-population for offspring production 
P' := selectparents P ( t ) ; 
//recombine the "genes" of selected parents 
recombine P'(t); 
//perturb the mated population stochastically 
mutate P' (t) ,-
//evaluate its new fitness 
evaluate P'(t); 
//select the survivors from actual fitness 
P := survive P,P'(t); 

end 

We adopt the notation from [315]. The population of the CGA consists of an «-tuple 
of binary strings bj of length /, where the bits of each string are considered to be the 
genes of an individual chromosome. Each individual bi represents a feasible solution 
in the search space with the quality of the solution determined by a fitness function f. 
Selection of individuals to reproduce is performed proportional to their fitness. The 
probability that individual bj is selected from tuple (&i,&2, ...,&«) to be a member of 
the next generation is given by 

P{bt is selected} = _ , / ( ^ A . > 0 (7.1) 
2-,j=\J(Dj) 

The population is initialized with random bit strings and individuals are modified 
by crossover and mutation operators. Mutation operates independently on each bi by 
randomly flipping one or more bits. The event that the y'-th bit of the i-th individual 
is flipped is stochastically independent and occurs with probability pm. Crossover is 
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applied to randomly paired individuals with probability pc. Classically single-point 
crossover is used, a randomly chosen recombination point is chosen and crossover on 
the following two parents 

111|11111 

000|00000 

produces the following two offspring 

11100000 

00011111 

7.4.2 Extensions to the CGA 

The CGA presented in the previous subsection is the GA in its simplest form. As such 
it is useful for studying the theoretical properties of GAs but for most applications it is 
extended in one or more of the following ways: 

• non-bit string representation (e.g., integers, floating point numbers, character 
strings, graphs, etc.) 

• adaptive parameters (e.g., varying mutation rates, crossover rates, population 
size, etc.) 

• selection functions (e.g., tournament selection, stochastic universal sampling, 
etc.) 

• speciation (see section 7.5) 

In addition the GA may be combined with Lamarckian learning by performing a local 
optimization on every generated individual. This approach is referred to as a memetic 
algorithm [316]. 

7.4.3 Theoretical foundations 

The fundamental theorem in GAs is Hollands Schema Theorem [314]. A schema is a 
bit string with one or more don 't care values. For example, the schema 100*10has one 
don't care value and represents two possible bitstrings 100110 and 100010. The order 
of a schema s is defined as the number of non-don't care positions. E.g., hi the previous 
example the order o(s) = 5. The defining length 8 of a schema is defined as the distance 
between the first and the last fixed string positions. It defines the compactness of 
information in a schema. For example, for s=***001 *110, 8is) = 10 — 4 = 6. 

Given these definitions the Schema Theorem can be stated as follows: 
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Short, low-order, above-average schemata receive exponentially increas
ing trials in subsequent generations of a genetic algorithm. 

Mathematically, this can be formulated as: 

^(S,t+l)>^(S^ V-Pc)-j^-o(S).p„ 
Fit) 

where Fit) is the average fitness of the population and B, (S, t) is defined as the 
expectation of the number of bit strings matching schema S at time t. Based on the 
Schema Theorem Goldberg [307] proposes the Building Block Hypothesis [317]: 

A genetic algorithm seeks near-optimal performance through the juxtapo
sition of short, low-order, high-performance schemata, called the building 
blocks. 

Goldberg states in [307]; 

Short, low-order, and highly fit schemata are sampled, recombined, 
and re-sampled to form strings of potentially higher fitness. In a way, by 
working with these particular schemata (the building blocks), we have re
duced the complexity of our problem; instead of building high-performance 
strings by trying every conceivable combination, we construct better and 
better strings from the best partial solutions of past samplings. 

So, the schema theorem says that the GA will produce increasingly fit individuals 
where the better individuals match short, low-order schemata. However, the main ques
tion is, does the CGA converge to the globally best solution? Intuitively we can already 
see a problem if we consider a search space where the best individual is a long, high 
order schema (e.g., 01111011). Crossover and mutation will easily break the schema 
thus the GA may never find the best individual. Work by Rudolph in [315] confirms 
that this is the case, convergence of the CGA cannot be guaranteed. They prove that, 
to ensure convergence, an elitist GA must be used where the best individual found 
over time is manually preserved. However Rudolph's proofs only prove that the global 
solution can be found, they say nothing about the time needed to reach a solution. 

The Schema theorem proves that the CGA will make progress when searching the 
parameter space. However, the theorem is plagued with a number of problems that 
limit its practical application: 

• Proof of convergence 

• Only applicable to the CGA (bit string representation) 

• The Schema theorem is an inequality instead of an equality3 , it only provides 
a lower bound for the expected number of schema's . This makes it difficult to 

3Thc theorem neglects the small probability that a string belonging to the schema s will be created from 
nothing by a mutation of a string that did not belong to s in the previous generation. 
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use schema theories to predict the future behavior of a GA even for a single 
generation ahead [318] 

Though many extensions to the theorem have been developed, the schema theorem and 
its variants have been widely criticized with many researchers believing that "schema 
theorems are nothing more than trivial tautologies of no use whatsoever" [318], This 
is arguably even more so for the Building Block Hypothesis, where Goldberg himself 
admits that "While these claims seem perfectly reasonable, how do we know whether 
they hold true or not" [307]. This point will be revisited in section 7.7. 

7.4.4 Applications 

Theoretical foundations aside, GAs have found widespread use in many domains. The 
main disadvantage of GAs are the high number of function evaluations needed for con
vergence. Therefore they are best suited to problems where there is little problem spe
cific information that can be exploited and where traditional, usually gradient-based, 
algorithms perform poorly. Such problems are typically characterized by high noise, 
non-polynomial time complexity, many local minima (multi-modal), and dependencies 
between variables (epistasis). Within this domain GAs have performed very successful 
with many applications in transportation [319], electronics [320], vehicle design [321], 
scheduling [322], data fitting [323], and many others. 

7.5 Parallel Genetic Algorithms 

7.5.1 Introduction 

Since GAs are population-based they easily lend themselves to parallelism. The to
tal population can be divided into different sub-populations evolving in parallel, each 
scheduled on a different CPU. The motivation for dividing up the population need not 
be a purely computational one. For example, from a biological standpoint it makes 
sense to consider speciation: Genomes that differ considerably from the rest of the 
population are automatically split off into a separate sub-population and continue to 
evolve independently. Thus forming a new species. In this way the parameter space 
is searched more efficiently. The idea of speciation, like many other concepts and 
operators, was pioneered by Holland in the early seventies [314]. 

The terms Parallel Genetic Algorithms (PGA) or Distributed Genetic Algorithms 
(DGA) [324] usually refer to the case whenever the population is divided up in some 
way, for whatever reason. Strictly speaking the terms refer to the actual implementation 
of the GA on (massively) parallel hardware or on a grid (e.g., [325]). Unfortunately 
though, the terminology for the different models varies between authors and can be 
very confusing [326]. 
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In this chapter we are only interested in PGA on the model level (i.e., different 
speciation models), parallelism for computational reasons, including scheduling, will 
not be considered. 

7.5.2 Island model 

The island model [327] is probably the most well known PGA. Different sub-populations 
exist (initialized differently) and sporadic migration can occur between islands allow
ing for the exchange of genetic material between species and inter-species competition 
for resources. 

This model is also known as the migration model [328] or stepping stone model 
[326], depending on the migration constraints. As stated above, the population is di
vided into a number of independent sub-populations, so-called demes, with inter-deme 
migration. Selection and recombination are restricted per deme, such that each sub-
population may evolve towards different locally optimal regions of the search space 
(called niches in the terminology of Goldberg [307]). Depending on the size and 
number of demes the model can be coarse grained or fine grained [326]. The mi
gration model introduces five new parameters: the migration topology, the migration 
frequency, the number of individuals to migrate, a strategy to select the emigrants, and 
a replacement strategy to incorporate the immigrants. The island model is illustrated 
in figure 7.3 for two topologies. 

Evolve 

I | N 'sland l V * Migrate "^Is land 2^\ |fl 

Figure 7.3: Ring and grid migration topologies in the Island Model 

A famous real world example of this are Darwin 's finches (also known as the Gala
pagos Finches). These are 13 or 14 different but closely related species of finches 
Charles Darwin collected on the Galapagos Islands during the Voyage of the Beagle. 
Darwin later established that each species was uniquely related to individual islands. 
The geographical isolation was such that each species could adapt to the environment 
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on its specific island, from a common ancestor, while still being able to migrate to a 
different island. The following quote from chapter 17 of Darwin 's The Voyage of the 
Beagle illustrates this: 

The remaining land-birds form a most singular group of finches, re
lated to each other in the structure of their beaks, short tails, form of body 
and plumage: there are thirteen species, which Mr. Gould has divided into 
four subgroups. All these species are peculiar to this archipelago; and so 
is the whole group, with the exception of one species of the sub-group Cac-
tornis, lately brought from Bow Island, in the Low Archipelago. [...] The 
most curious fact is the perfect gradation in the size of the beaks in the 
different species of Geospiza, from one as large as that of a hawfinch to 
that of a chaffinch, and (if Mr. Gould is right in including his sub-group, 
Certhidea, in the main group) even to that of a warbler. The largest beak 
in the genus Geospiza is shown in Fig. 1, and the smallest in Fig. 3; but 
instead of there being only one intermediate species, with a beak of the 
size shown in Fig. 2, there are no less than six species with insensibly 
graduated beaks. The beak of the sub-group Certhidea, is shown in Fig. 
4. The beak of Cactornis is somewhat like that of a starling, and that of 
the fourth subgroup, Camarhynchus, is slightly parrot-shaped. Seeing this 
gradation and diversity of structure in one small, intimately related group 
of birds, one might really fancy that from an original paucity of birds in 
this archipelago, one species had been taken and modified for different 
ends. In a like manner it might be fancied that a bird originally a buz
zard, had been induced here to undertake the office of the carrion-feeding 
Polybori of the American continent. 

"Mr. Gould" from the quote refers to John Gould, a famous English ornithologist. 

7.5.3 Cellular model 

Another model is the cellular model [329] (also known as the diffusion model [328] 
or massively parallel GA [326]). Instead of parallelism on the population level, the 
diffusion model concentrates on interactions of individuals within a single population. 
In this case parallelism is performed on the level of individuals. Communicat ion (se
lection, recombination) of individuals is restricted to a local neighborhood structure. 
This type of separation is referred to as isolation by distance [330]. This way, advan
tageous genetic information may arise at different points in the topological interaction 
structure and spread slowly over the population. In this case the neighborhood size and 
the interaction structure play an important role for maintaining diversity [328], Whi le 
there are no explicit islands, there is the possibility of similar effects. 

The cellular model is illustrated in figure 7.4 for a neighborhood distance of one. 
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Figure 7.4: Cellular speciation model 

1.5 A Fitness sharing 
A third model, the one originally proposed by Holland [314] and applied to the 2-arm 
bandit problem, revolves around the sharing concept. It is inspired from the observa
tion of positive assortive mating in nature (like mates like). The model is commonly 
known as fitness sharing. A sharing function s(d) is defined to determine the neigh
borhood and degree of similarity between each individual in the population (e.g.: if 
individuals are bit strings, s(d) can be defined as sid) : N i—> [0,1], with d proportional 
to the Hamming distance). Each individual that belongs to the same species (as de
termined by sid)) then receives the same fitness value. See for example the overview 
in [331]. 

7.5.5 Others 

The three model types listed here are the major categories, though many variations ex
ist such as: inbreeding with intermittent crossbreeding, overlapping demes, dynamic 
demes, segregative GA, crowding, pre-selection, co-evolutionary algorithms, hierar
chical GA, Cohort GA, the community model and the plant pollination model. Addi
tionally, many hybrid schemes are possible where different aspects of each model are 
combined. See for example [332]. 

7.5.6 Applications 

The different speciation models have also found widespread use. For example, [333] 
uses speciated evolution for inference of Bayesian networks. Another example is 
NEAT [334], a platform that uses fitness sharing to evolve neural networks. Other uses 
include scheduling [335,336] , surrogate driven optimization [337] (using a hierarchy 



www.manaraa.com

EVOLUTIONARY M O D E L T Y P E S E L E C T I O N 7-15 

of island models) , and vehicle concept selection in aerospace [338]. An extensive treat
ment of all the applications of E A is out of scope for this chapter, excellent references 
can be found in [326 ,339 ,340] . 

7.6 Heterogeneous Evolution of Surrogate Models 

This Section discusses how different surrogate models may be evolved cooperatively 
in order perform model type selection. For this it is important for the reader to revisit 
the general global surrogate model ing control flow described in chapter 3 since it forms 
the basis for the evolutionary algorithm described below. 

7.6.1 Motivation 

While the mathematical formulation of global surrogate modeling presented in section 
3.2 is clear cut, its practical implementat ion raises a number of obvious questions and 
design choices. These are discussed in detail in chapter 3 . For this chapter however, we 
are most interested in two particular subproblems: the model type selection problem 
(section 3.7.1) and the model complexity selection problem (section 3.7.2). 

7.6.1.1 Classic approach 

If multiple model types are considered, the classic approach is to simply to try out 
different types and select the best one according to one or more accuracy criteria. There 
is ample literature available that benchmarks model types in this way: [ 2 , 3 , 10—20]. 
But claims that a particular model type is superior to others should always be met with 
some skepticism. 

In order for the different benchmarking studies to be truly useful for a domain 
expert, the results of such studies must be collected and compiled into a general set 
of rules, recipe, or flowchart. To ease the discussion, let us denote such a compilation 
into a learning algorithm by L. L is then essentially a classifier that can predict which 
model type t G T to use based on data D and application requirements T: 

LiD,T)=t (7.2) 

When executed L should then be able to give a specific recommendat ion as to 
which model type to use for a given problem. This recommendat ion should be more 
specific than the general rules of thumb that are available now. Experience shows 
this to be exactly what an application engineer wants. However, constructing such a 
learner L for any but the most restricted class of problems is a daunting undertaking for 
obvious practical reasons. Firstly, deciding which problem/application features to train 
the classifier on is far from trivial. Also even if this is done, the number of features can 
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be expected to be high thus gathering the necessary data (by manually solving equation 
3.2) to train L accurately will be very computationally expensive. 

Secondly, as mentioned above, the success of a model type largely depends on the 
expertise of the user, the quality of the data, and even the quality of the software im
plementation of the technique. Neural networks are a good example in this respect. In 
the right hands they are able to perform very well on many problems. However, if poor 
choices are made with regard to training function, topology selection, generalization 
control, training parameters, software library, etc. they may seem to perform poorly. 
How to take into account this information in LI 

Thirdly, a more fundamental problem with this approach is that data must be avail
able in order for the reasoner to work. However, if only a simulation code is available 
(as is often the case) data must be collected, and the optimal data collection strategy 
that minimizes the number of points depends on the model type. Also, the optimal 
model type will change depending on how much data is available and how it is dis
tributed [341]. One could argue to instead train L only on the data characteristics 
which are known in advance (e.g., dimensionality, noise level, etc.). The question is 
then again, which characteristics are most important? Furthermore, in many cases not 
much is known about the true behavior of the response thus there will typically not be 
enough information to train L accurately. 

This brings us to the final point. A main reason for turning towards global surrogate 
modeling methods is that little is known about the behavior of the response [44]. The 
goal is to get insight into that behavior in a computationally cheap way by applying 
surrogate methods. Another reason why information about the data may be scarce is 
that the source of the data is confidential or proprietary and very little information is 
disclosed. In these situations using or training L becomes very difficult. 

Finally, we must stress that we do not say that this problem is too difficult and 
not worth trying to solve. Indeed many such problems exist and are currently being 
tackled, particularly in medicine. Instead we argue that users of global surrogate mod
eling methods can benefit from a more dynamic approach that is flexible, can be easily 
applied to a wide range of different problems, can easily incorporate new fitting tech
niques and process knowledge, and naturally integrates with an adaptive data collection 
procedure. We shall revisit this point in sections 7.6.1.2 and 7.7. 

Assuming the model type selection problem has been solved, there remains the 
model parameter selection problem. This particular problem has been discussed in 
detail in section 3.7.2 and is not the focus of this chapter 

7.6.1.2 Proposed solution 

While we are primarily interested in the first problem, the approach described in this 
chapter naturally incorporates problem 2 as well. In both cases there is little theory 
that can be used as a guide. It is in this setting that the evolutionary approach can 
be expected to do well. We describe the application of a single GA with speciation to 
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both problems: the selection of the surrogate type and the optimization of the surrogate 
model parameters (hyperparameter optimization). In addition, we do not assume all 
data is available at once but must be sampled incrementally since it is expensive (active 
learning). 

The idea is to maintain a heterogeneous population of surrogate model types and let 
them evolve cooperatively and dynamically with the changing data distribution. The 
details will be presented below. 

7.6.2 Related Work 

The evolutionary generation of regression models for given input-output data has been 
widely studied in the genetic programming community [342—344]. Given a set of 
mathematical primitives (+, sin, exp, /, x, y, etc.) the space of symbolic expression 
trees is searched to find the best function approximation. The application of GAs to 
the optimization of model parameters of a single model type (homogeneous evolution) 
has also been common: [345—349] and the extensive work by Yao et. al. [350,351]. 
Integration with adaptive sampling has also been discussed [22], However, these efforts 
do not tackle the model type selection problem, they restrict themselves to a particular 
method (e.g., SVMs or neural networks). As [262] state "Little is known about which 
types of model accord best with particular features of a landscape and, in any case, 
very little may be known to guide this choice.". Likewise, [67] note: "...it is important 
to stress that there are always situations when one model type cannot be applied or 
suffers from inadequacies and can be well complemented or replaced by another one". 
Thus an algorithm to help solve this problem in a dynamic, automated way is very 
useful [352]. This is also noticed by [261] who compare different surrogate models 
for approximating each objective during optimization. They note that in theory their 
approach allows the use of a different model type for each objective. However, such 
an approach will still require an a priori model type selection and does not allow for 
dynamic switching of the model type or the generation of hybrids. 

There has also been much research on the use of surrogate models in evolutionary 
optimization of expensive simulators (to approximate the fitness function). References 
include [353—356], the work by Ong et al. [357], and more recently by Lim et. al. [ 1 8]. 
In general the theory is referred to as Surrogate Based Optimization or Metamodel As
sisted Optimization. A good overview reference is given by [63] and [12]. For exam
ple, [ 1 8] compare the utility of different local surrogate modeling techniques (quadratic 
polynomials, GP, RBF, ...) including the use of (fixed) ensembles, for optimization of 
computationally expensive simulation codes. Local surrogates are used together with 
a trust region framework to quickly and robustly identify the optimum. As noted in the 
introduction, the contrast with this work is that references such as [18] are interested 
in the optimum and not the surrogate itself (they make only a "mild assumption on 
the accuracy of the metamodeling technique"). In addition the model parameters are 
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taken as fixed and there is no integration with active learning. In contrast we place 
very strong emphasis on the surrogate model accuracy, the automatic setting of the 
hyperparameters, and the efficient sampling of the complete design space. 

The work of Sanchez et. al [358] and Goel et. al [87] is more useful in our context 
since they provide new algorithms for generating an optimal set of ensemble members 
for a fixed set of data points (no sampling). Unfortunately, though, the parameters 
of the models involved must still be chosen manually. Nevertheless, their approaches 
are interesting, and can be used to further enhance the approach presented here. For 
example, instead of returning the single final best model , an optimal ensemble member 
selection algorithm can be used to return a potentially much better model based on the 
final population or Pareto front. 

The work in [359] from machine learning is also related. The authors describe 
an interesting classification algorithm COMB that combines online an ensemble of 
active learners so as to expedite the learning progress in pool-based active learning. In 
their terminology an active learner is a combination of a model type and a sampling 
algorithm. A weighted ensemble of active learners is maintained and each learner is 
allowed to express interest in a pool of unlabeled training points. Depending on the 
interests of the active learners, an unlabeled point is selected, labeled by the teacher, 
and based on the added value of that point the different active learners are punished or 
rewarded. Internally the active learners are SVM models whose parameters are chosen 
manually. In principle, with a number of approximations one could adapt the algorithm 
to the regression case. If one then also included hyperparameter optimization, the result 
would be very similar to the SUMO Toolbox (cfr. chapter 4) configured with one or 
more of the Error, LRM, or EGO [89] sample selection algorithms, but without the 
ability to combine different criteria. However, a problem would be that COMB assumes 
a pool of unlabeled training data is given. However, when modeling a simulation code 
in regression no such pool is available. Some external algorithm would still be needed 
to generate it in order for COMB to work. COMB does also naturally allow for different 
model types but in a more static way than the algorithm in Section 7.6.3: there is no 
hyperparameter optimization, the number of each active learning type remains fixed 
(though the weights can change) leading to a potentially high computational cost, and 
hybrid models are not considered. The extension to the multi-objective case is also 
non-trivial. Of course COMB could be extended to incorporate such features, but the 
result would be very similar to the work presented here. Nevertheless, the specific 
scoring functions, probability weightings, and ensemble weight updates, seem very 
useful and could be implemented in the SUMO Toolbox to complement the approach 
presented here. 

Finally, the work by Escalante et. al. [360] is most similar to the topic of this 
chapter. [360] consider the problem of finding the optimal classifier and associated 
hyperparameters for a given classification problem (active learning is not considered). 
A solution is encoded as a vector and Particle Swarm Optimization (PSO) is used to 
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search for good classifiers. Good results are shown on various benchmarks. Unlike the 
GA approach, however, it is less straightforward to deal with multiple sub-populations, 
giving models rooin to mature independently before entering competition. The use of 
operators tuned to specific models is also difficult (to increase the search efficiency). 
In effect, the PSO approach takes a top-down view, using a high level encoding in a 
high dimensional space, a typiciil particle has 25 dimensions [361]. In contrast the GA 
approach is bottom up, the model specific operators result in a much smaller search 
space, different for each method (e.g., 1 for the spline models and 2 for the SVM 
models). This leads to a more efficient search requiring less fitness evaluations and 
facilitates the incorporation of prior knowledge. In addition, by using PSO there is no 
natural way of enabling hybrid solutions (ensembles) without extending the encoding 
and further increasing the search space. In contrast, the hybrid solutions arise very 
naturally in the GA framework and do not impact the search space of the other model 
types. The same is true of the extension to the multi-objective case, a very natural step 
in the GA case. 

In sum, in by far the majority of the related work considered by the authors, specia
tion was always constrained to one particular model type, for example neural networks 
in [334]. The model type selection problem was still left as an a-priori choice for the 
user. Or, if multiple model types are used, the hyperparameters are typically kept fixed 
and there is no tie-in with the active learning process. 

7.6.3 Algori thm 

We now present the concrete GA for heterogeneous evolution as it is embedded (as a 
plugin) in the SUMO Toolbox. The speciation model used is the island model since 
we found it the most natural way of evolving multiple model types while still allowing 
for hybrid solutions. The algorithm is based on the Matlab GADS toolbox and works 
as follows (see figure 7.5 and reference [273] for more details): After the initial DOE 
has been calculated (cfr. the control flow in Section 4.5.1), an initial sub-population 
Mi is created for each model type t e T (i — l,..,h). The exact creation algorithm 
is different for each niodel type so that model specific knowledge can be exploited. 
Subsequently, each deme is allowed to evolve according to an elitist GA. Parents are 
selected according to a selection algorithm (e.g., tournament selection) and offspring 
undergo either crossover (with probability pf) or mutation (with probability 1 — pc). 
The models M-t are implemented as Matlab objects (with full polymorphism) thus each 
niodel type can choose its own representation and mutation/crossover implementations 
(this implements the minimization over 6 G 0 of equation 3.2). While mutation is 
straightforward, the crossover operator is more involved (see Section 7.6.5 below). 

The fitness function calculates the quality of the model fit, according to criteria 
£,. The current deme population is then replaced with its offspring together with el 
elite individuals. Once every deme has gone through a generation, migration between 
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01. XQ — initialExperimentalDesign(); 
02. X = X0; 
03. f\x = evaluateSamples(X); 
04. T={ti,...,th}; 
05. Mt = createInitialModels(Y;,/?o/?.s7ze/); / = l,..,h 
06. M = u i i M ; 

07. while(<| not reached) do 
08. scores — {} ; ,g<?/7 = 1; 
09. while(t ermination_criteria not reached) do 
10. foreach M, C M d o 
11. scoresj = fitness(A^,Jf,yjx, § ) ; 
12. e/zYe — sorl( [scores^; A^])]1 ;e/; 
13. parents = sclcc\.(scores t, Mi); 
14. parentsxo — selectXOParents(/>arewfs,/?<?); 
15- offsprings — crossover iparentsxo, ESdlj/, ESmax); 
16. parents,m,t = parent s\parentsxo; 
17. offspringmilt =^ muiate(parentsmut); 
18. M, = e/i're (J offsprings U offspringxo; 
19. scores = scores / U scores; 
20. end 
21 . if imodigen, mi) = 0) 
22. M = migratc(A/, scores, mj, /»</) 
23 . end 
24. , M = extinctionPrevention(iV<f, Tmm); 
25. gen — ge« -f- 1; 
2<J. end 
27. ^G7etv = selects amplcs (X ,y |x>-^ ; 
2 8 - / l ^ w = evalualeSamplcs(X„evt,); 
29. [ X , / | x ] - m e r g e ( X , / l x , ^ e w , / | x _ ) ; 
30. end 

31. return bestModel(M); 

Figure 7.5: Algorithm for global surrogate modeling with heterogeneous evolution and active 
learning 

ind iv idua l s is a l l owed to o c c u r at m ig ra t i on interval w/, w i th mig ra t ion fraction m/-
a n d m i g r a t i o n d i rec t ion mj (a r i ng t o p o l o g y is u sed ) . T h e m i g r a t i o n s t ra tegy is as 
fo l lows: the / = (\Mj\ • mf) fittest ind iv idua l s o f Mi r ep l ace the / wor s t ind iv idua ls in 
the n e x t d e m e (def ined b y mf). A s in [ 3 6 2 ] , m i g r a n t s are dup l i ca ted , n o t r e m o v e d f rom 
t h e s o u r c e p o p u l a t i o n . N o t e tha t in this con t r ibu t ion w e are p r imar i l y c o n c e r n e d w i th 
i n t e r -mode l spec ia t ion ( spec ia t ion as in different m o d e l t ypes ) . In t r a -mode l spec ia t ion 
(e .g . , t h r o u g h the u s e o f fitness sha r ing w i th in one m o d e l t ype ) is s o m e t h i n g w h i c h w a s 
n o t d o n e b u t c o u l d eas i ly b e inco rpora t ed . 

O n c e the G A h a s t e rmina t ed , con t ro l pa s se s b a c k to the m a i n g loba l su r roga te 
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modeling algorithm of the SUMO Toolbox. At that point M contains the best set of 
models that can be constructed for the given data. If the accuracy of the models is 
sufficient the main loop terminates. If not, a new set of maximally informative sample 
points is selected based on several criteria (quality of the models, non-linearity of the 
response, etc.) and scheduled for evaluation. Once new simulations become available 
the GA is resumed. 

Note that sample evaluation and model constructiori/hyperparameter optimization 
run in parallel. For clarity, algorithm 7.5 shows them running sequentially but this is 
not what happens in practice. In reality both are interleaved to allow an optimal use of 
computational resources. 

7.6.4 Extinction prevention 

Initial versions of this algorithm exposed a major shortcoming, specifically due to the 
fact that models are being evolved. Since not all data is available at once but trick
les in, \Xj\ — \Xj—\ | samples at a time, models that need a reasonable-to-largc number 
of samples to work well will be at a huge disadvantage initially. Since they perform 
badly at first, they may get overwhelmed by other models who are less sensitive to this 
problem. In the extreme case where they are driven extinct, they will never have had 
a fair chance to compete when sufficient data does become available. They may even 
have been the superior choice had they still been around4 . Therefore an Extinction Pre
vention (EP) algorithm was introduced that ensures a model type can never disappear 
completely. 

EP works by monitoring the population and each generation recording the number 
of individuals of each model type. If this number falls below a certain threshold Tm/„ 
for a certain model type, the EP algorithm steps in and ensures the model type has its 
numbers replenished up to the threshold. This is done by re-inserting the last models 
that disappeared for that type (making copies if necessary). The re-inserted models 
replace the worst individuals of the other model types (who do have sufficient numbers) 
evenly. 

Strictly speaking, EP goes completely against the survival of the fittest principle 
in evolutionary algorithms. By using it we are manually working against selection, 
preserving model types which give poor results at that point in time. However, in this 
setting it seems a fair measure to take (we do not want to risk losing a model type 
completely) and improves results in most cases (see Section 7.11). At the same time it 
is straightforward to implement and understand, needing no special control parameters. 
All it has to ensure is that a species is never driven extinct. 

4 As an example, this observation was often made when using rational models on electro-magnetic data. 
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7.6.5 Heterogeneous recombination 

The attentive reader will have noticed that one major problem remains with the imple
mentation as discussed so far. The problem lies in the genetic operators, more specifi
cally in the crossover operator. Migration between demes means that model types will 
mix. This means that a set of parents selected for reproduction may contain more than 
one model type. The question then arises: how to perfonn recombination between two 
models of completely different types. For example, how to meaningfully cross an Arti
ficial Neural Network with a rational function? The solution we propose here is to use 
ensembles (behavioral recombination). If two models of different types are selected to 
recombine, an ensemble is created with the models as ensemble members. Thus, as 
soon as migration occurs, model types start mixing, and ensemble models arise as a 
result. These are treated as a distinct model type just as the other model types. 

However, the danger with this approach is that the population may quickly be over
whelmed by large ensembles containing duplicates of the best models (as was noticed 
during initial tests). To counter this phenomenon we apply the similarity idea from 
Holland's sharing concept [314]. Individual models will try to mate only with indi
viduals of the same type. Only in the case where selection has made this impossible 
shall different model types combine to form an ensemble. In addition we enforce a 
maximum ensemble size ESmax and require that ensemble members must differ ESjiff 
percent in their response (their 'behavior ' ) . This is calculated by evaluating the models 
on a dense grid. 

This leaves us with only three cases left to explain: 

1. ensemble - ensemble recombination: a single-point crossover is made between 
the ensemble member lists of each model (note that the type of the ensemble 
members is irrelevant) 

2. ensemble - model recombination: the model replaces a randomly selected en
semble member with probability pswap or gets absorbed into the ensemble with 
probability 1 — pswap (respecting ESmax and ESdi/f). 

3. ensemble mutation: one ensemble member is randomly deleted 

Besides enabling hybrid solutions, using ensembles has the additional benefit of allow
ing a model to lie 'dormant ' in an ensemble with the possibility of re-emerging later 
(e.g., if after mutation only one ensemble member remains). Note that, in contrast 
to [18] for example, the type of the ensemble members is not fixed in any way but 
varies dynamically. 

We have not yet mentioned what type of ensemble will be used. There are several 
methods for combining the outputs of models, such as average, weighted average, 
Dempster-Shafer methods, using rank-based information, supra-Bayesian approach, 
stacked generalization, etc [202]. To keep the implementation straightforward and the 
complexity (number of parameters) low we have opted for a simple average ensemble. 
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Of course different, more powerful combination methods could be used instead and 
they will only improve results. The exact method used is of lesser importance since it 
does not change the methodology. The advantage of a simple average ensemble is that 
it works in all cases: It makes no assumption on the model types involved, nor docs it 
mandate any changes to the models or training algorithms (for example, like negative 
correlation learning) since this is not always possible (e.g., when using proprietary, 
application specific, modeling code). 

7.7 Critique 

The algorithm presented so far has a number of strengths and weaknesses. The ob
vious advantage is the ability to perform automatic selection of the model type and 
complexity for a given data source (no need to do multiple parallel runs or train a 
complex classifier). In addition the algoritlim is generic in that it is independent of 
the data origin (application), model type, and data collection strategy. New approxi
mation methods can easily be incorporated without changing the algorithm. Problem 
specific knowledge and model type specific optimizations based on expert knowledge 
can also be incorporated if needed (i.e., by customizing the genetic operators). Fur
thermore, the algorithm naturally integrates with the data collection strategy, allowing 
the best model type to change dynamically and naturally allows for hybrid solutions. 
Finally, it naturally extends to the multi-objective case and can be easily parallelized 
to allow for faster computations (though the computational cost is still outweighed by 
the simulation cost). 

The main disadvantage is due to the fact that the approach is based on evolutionary 
algorithms: full determinism cannot be guaranteed. This raises the obvious question 
of how stable the convergence is over multiple runs. The same can be said of standard 
approaches towards hyperparameter optimization (which typically include randomiza
tion) or for any algorithm involving a GA for that matter. Formulating theoretical 
foundations in order to come to convergence guarantees for GAs is a difficult under
taking and has been the topic of intense research ever since their inception in the late 
80s. Characterizing the performance of genetic algorithms is complex and depends on 
the application domain as well as the implementation parameters [363]. Most theoretic 
work has been done on schema theorems for the Canonical Genetic Algorithm (CGA), 
which try to prove convergence in a simplified framework using a binary representa
tion. However prediction of the future behavior of a GA turns out to be very diffi
cult and much controversy remains over the usefulness of these theorems [307,318] . 
Theoretical work on other classes of GAs or using specific operators has also been 
done [363—367] but is unfortunately oflittlc practical use here. For example, the work 
in [368] requires the calculation of fitness ratios, but this is impractical (and computa
tionally expensive) to do in this situation and the results will vary with the application. 

Thus, for the purposes of this chapter a full mathematical treatment of algoiithm 
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7.5 and its convergence is out of scope. Due to the island model, sampling procedure, 
and heterogeneous representation/operators used, such a treatment will be far from 
trivial to construct and distract from the main theme of the chapter. In addition its 
practical usefulness would remain questionable due to the many assumptions that will 
be required. However, gaining a deeper theoretical insight into the robustness of the 
algorithm is still very important. A sensitivity study, as described in [369], of the main 
GA parameters involved will shed more light on this issue. 

Theoretical remarks aside, we found that in practice the approach works quite well. 
If reasonable population sizes are used together with migration and the extinction pre
vention algorithm described in Section 7.6.4, the results of the algorithm are quite 
robust and give useful results and insights into the modeling problem. Besides the re
sults given in this chapter, good results have also been reported on various real world 
problems from aerodynamics [370], electronics [267], hydrology [371], and chem
istry [273]. 

In sum, this approach is useful if: little information is known about the expected struc
ture of the response, if it is unclear which model type is most suited to the problem, 
data is expensive and must be collected iteratively, and hybrid solutions are useful. In 
other cases, for example, it is clear from a priori knowledge which model type will be 
the most suitable (e.g., based on existing rules of thumb for a well defined, restricted 
problem), this approach should not be applied, save as a comparison. 

7.8 Test Problems 

We now consider five test problems to which we apply the heterogeneous GA (from 
now on abbreviated by HGA). The objective is to validate if the best model type can 
indeed be determined automatically, and in a way that is cheaper and better than the 
simple brute force method: doing multiple, single model type runs in parallel. The 
problems include 2 predefined mathematical functions, and real-world problems from 
electronics and aerodynamics. 

The dimensionality of the examples ranges from 2 to 13. This is no inherent limit 
but simply depends on the model types used. For example if only SVM-type models 
are used the number of dimensions can be arbitrarily high, while for smoothing spline 
models the dimensionality should be kept low. It all depends on which model types 
make up the population. 

We also hope to see evidence of a 'battle' between model types. While initially one 
species may have the upper hand, as more data becomes available (dynamically chang
ing hyperparameter optimization landscape) a different species may become dominant. 
This should result in clearly noticeable population dynamics, a kind of oscillatory stage 
before convergence. We briefly discuss each of the test problems in turn. 
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7.8.1 Ackley Funct ion (AF) 

The first test problem is Ackley's Path, a well known benchmark problem from opti
mization, a plot is shown in figure 7.6. Its mathematical definition for d dimensions 
is: 

Fix) - 2 0 • exp - 0 . 2 
\ 

5>? (7.3) 

exp f — • ̂ c o s ( 2 7 r - x , ) J + 20 + . 
(=1 

with x; G [—2,2] for i= l,...,d. For easy visualization we take d = 2. For this func
tion a validation set and a test set of 5000 random points each is available. Although 
this is a function from optimization we are not interested in optimizing it, rather in 
reproducing it using a regression method with minimal data. 

-2 -2 

Figure 7.6: The Ackley Function 

7.8.2 Kotanchek Funct ion (KF) 

The second predefined function is the Kotanchek function [372], depicted in figure 7.7. 
Its mathematical definition is given as: 

F(Xi,X2,Ui,U2,U3) = (7.4) 
1.2+jcf 

with x\ G [—2.5,1.5], xi G [—1.0,3.0], and with e uniform random simulated numeric 
noise with mean 0 and variance 1 0 - 4 . As you can see only the first two variables are 
relevant. For this function a validation set and a test set of 5000 scattered points each 
is available. 
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Figure 7.7: The Kotanchek function showing the two relevant variables 

7.8.3 EM Example (EE) 

The fourth example is a 3D Electro-Magnetic (EM) simulator problem [373]. Two 
perfectly conducting round posts, centered in the E-plane of a rectangular waveguide, 
are modeled, as shown in Figure 7.8. The 3 inputs to the simulation code are: the 
signal frequency / , the diameter of the posts d, and the distance between the two posts 
w. The outputs are the complex reflection and transmission coefficients Sn and S21 • 
The simulation model was constructed for a standard W R 9 0 rectangular waveguide 
with / G[7 GHz, 13 GHz] , d G[l mm, 5 mm] and w G[4 mm, 18 m m ] . In addition, a 
2 5 3 data set is available for testing purposes. 

W. I 
I 
m 

m 

-J 

U-

t 
H J 

Figure 7.8: Cross sectional view and top view of the inductive posts [373] 
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(a) LGBB geometry [374] (b) Lift plotted as a function of speed 
and angle of attack with 
side-slip angle fixed to 

zero. T375]. 

Figure 7.9: LGBB Example 

7.8.4 LGBB Example (LE) 

NASA's Langley Research Center is developing a small launch vehicle [374,376] that 
can be used for rapid deployment of small payloads to low earth orbit at significantly 
lower launch costs, improved reliability and maintainability. The vehicle is a three-
stage system with a reusable first stage and expendable upper stages. The reusable 
first stage booster, which glides back to launch site after staging around Mach 3 is 
named the Langley Glide-Back Booster (LGBB). In particular, NASA is interested in 
the aerodynamic characteristics of the LGBB from subsonic to supersonic speeds when 
the vehicle reenters the atmosphere during its gliding phase. 

More concretely, the goal is to gain insight about the response in lift, drag, pitch, 
side-force, yaw, and roll of the LGBB as a function of three inputs: Mach number, 
angle of attack, and side slip angle. For each of these input configurations the Cart3D 
flow solver is used to solve the inviscid Euler equations over an unstructured mesh of 
1-4 million cells. Each run of the Euler solver takes on the order of 5-20 hours on a 
high end workstation [374]. The geometry of the LGBB used in the experiments is 
shown in Figure 7.9a. 

Figure 7.9b shows the lift response plotted as a function of speed (Mach) and angle 
of attack (alpha) with the side-slip angle (beta) fixed at zero. The ridge at Mach 1 sep
arates subsonic from supersonic cases. From the figure it can be seen there is a marked 
phase transition between flows at subsonic and supersonic speeds. This transition 
is distinctly non-linear and may even be non-differentiable or non-continuous [375]. 
Given the computational cost of the CFD solvers, the LGBB example is an ideal appli
cation for metamodeling techniques. Unfortunately access to the original simulation 
code is restricted. Instead a data set of 780 points chosen adaptively according to the 
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method described in [375] was used. 

7.8.5 Boston Housing Example (BH) 

The Boston Housing dataset contains census information for 506 housing tracts in 
the Boston area and is a classic dataset used in statistical analysis. It was collected by 
Harrison et al and described in [377]. In the case of regression the objective is to predict 
the Median value of owner-occupied homes (in $1000's) from 13 input variables (e.g., 
per capita crime rate by town, nitric oxide concentration, pupil-teacher ratio by town, 
etc.). 

7.9 Model types 

For the tests the following model types are used: Artificial Neural Networks (ANN), 
rational functions, RBF models, Kriging models, LS-SVMs, and for the AF example: 
also smoothing splines. For the EM example only the model types that support com
plex valued outputs directly (rational functions, RBF, Kriging) were included. Each 
type has its own representation and genetic operator implementation (thanks to the 
polymorphism as a result of the object oriented design). As stated in subsection 7.6.5 
the result of a heterogeneous recombination will be an averaged ensemble. So in to
tal up to seven model types will be competing to approximate the data. Remember 
that all model parameters are chosen automatically as part of the GA. No user input is 
required, the models and data points are generated automatically. 

The A N N models are based on the Matlab Neural Network Toolbox and are trained 
with Levenberg Marquard backpropagation with Bayesian regularization [271,272] 
(300 epochs). The topology and initial weights are determined by the GA. When run 
alone (without the HGA) this results in high quality models with a much faster run time 
than training the weights by evolution as well. Nevertheless, the high level Matlab code 
and complex training function do make the ANNs much slower than any of the other 
model types. 

The LS-SVM models are based on the implementation from [269], the kernel type 
is fixed to RBF, leaving c and o" to be chosen by the GA. The Kriging model implemen
tation is based on [270] (except for the EM example) and the correlation parameters 
are set by the GA (the regression function is set to linear and the correlation function 
to Gaussian). The RBF models (and the Kriging models for the E M example, since the 
data is complex valued) are based on a custom implementation where the regression 
function, correlation function, and correlation parameters are all evolved. The rational 
functions are also based on a custom implementation, the free parameters being the 
orders of the two polynomials, the weights of each parameter, and which parameters 
belong in the denominator. The spline models are based on the Matlab Splines Toolbox 
and only have one free parameter: the smoothness. 
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Remember that the specific model types chosen for the different tests is less im
portant. This can be freely chosen by the user. What is important is rather how these 
different model types are used together in a single algorithm. Thus a full explanation 
of the virtues of each model types, as well as the representation and genetic operators 
used is out of scope for this chapter and would consume too much space. Details can be 
found in [273] or in the implementation that is available as part of the SUMO Toolbox. 

7.10 Experimental setup 

The following subsections describe the configuration settings used (and their motiva
tion) for performing the experiments. 

7.10.1 Sample selection settings 

For the LE and BH examples only a fixed, small size, data set is available. Thus, 
selecting samples adaptively makes little sense. So for these examples the adaptive 
sampling loop was switched off. For the other examples the settings were as follows: 
an initial optimized Latin hypercube design, using the method from [242], of size 50 is 
used augmented with the corner points. Modeling is allowed to commence once at least 
90% of the initial samples are available. Each iteration a maximum of 50 new samples 
are selected using the Local Linear (LOLA) adaptive sampling algorithm [239]. LOLA 
identifies new sample locations by making a tradeoff between eploration (covering the 
design space evenly) and exploitation (concentrating on regions where true response 
is nonlinear). LOLA's strengths are that it scales well with the number of dimensions, 
makes no assumptions about the underlying problem or surrogate model type, and 
works in both the M. and C domains. LOLA is able to automatically identify non-linear 
regions in the domain and sample these more densely compared to more linear, 'flatter' 
regions. 

By default LOLA does not rely on the (possibly misleading) approximation model, 
but only on the true response. This is useful here since it allows us to consider the 
model selection results independent of the sample selection settings. I.e., the final dis
tribution of points chosen by LOLA is the same across all runs and model types. This 
means that any difference in performance between models can not be due to differences 
in sample distribution. However, in many cases it may be desirable to also include in
formation about the surrogate model itself when choosing potential sample locations. 
In this case the LOLA algorithm can be combined with one or more other sampling 
criteria that do depend on model characteristics (for example the Error, LRM, and 
EGO algorithms available in SUMO). 
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7.10.2 GA settings 
The GA is run for a maximum of 15 generations between each sampling iteration 
(after sampling, the GA continues with the final population of the previous iteration). 
It terminates if one of the following conditions is satisfied: (1) the maximum number 
of generations is reached, or (2) 8 generations with no improvement. The size of each 
deme is set to 15. The migration interval m, is set to 7, the migration fraction m / to 
0.1 and the migration direction is both (copies of the mj best individuals from island i 
replace the worst individuals in islands i—\ and i+ 1). A stochastic uniform selection 
function was used. Since we want to find the best approximation over the complete 
design space, the fitness of an individual is defined as the root relative square error 
(RRSE): 

™y^ = \fefa-f (7'5) 
where yi,y}\,y are the true, predicted, and mean true response values respectively. 

Intuitively the RRSE indicates how much better an approximation is than the most 
simple approximation possible (the mean) [25]. In the case of the BH and LE examples 
no separate validation set is available, instead 2 0 % of the available data is reserved for 
this purpose (taking care to ensure the validation set is representative of the full data 
set by maximizing the minimum distance between validation points). Note that we 
are using a validation set since it is cheap and we have enough data available. In the 
case where data is scarce we would most likely use the more expensive &-fold cross 
validation as a fitness measure. This is the case for the EM example. 

The remaining parameters are set as follows: pm = 0.2,pc = 0.7,A: = l,pswap = 
0.8,el = l,ESmax = 3,ES'diff = 0 .1 , Tmjn = 2. The random generator seed was set to 
Matlab's default initial seed. 

7.10.3 Termination criteria 

In case of adaptive modeling only (no sample selection), the objective is to see what 
the most accurate model is that can be found in a limited period of time (a typical 
use case). Thus the required accuracy (target fitness value) is set to 0. For the LE the 
timeout is set to 180 minutes. For the BH example the timeout is significantly extended 
to 1200 minutes. Given the high dimensionality, the noise and discontinuities in the 
input domain it is a hard problem to fit accurately. In this case we are more interested 
to see how the population would evolve over such an extended period of time. 

In case of adaptive sampling, the criteria are: a target accuracy (RRSE) of 0 .01, 
and for the AF example a maximum number of 500 data points is enforced (to see 
what performance can be reached with a limited sample budget). 

file:///fefa-f
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7.10.4 Others 

Each problem was modeled twice with the heterogeneous evolution algorithm (once 
with EP = true, once with EP = false) and once with homogeneous evolution (a 
single model type run for each model type in the HGA). To smooth out random effects 
each run was repeated 15 times. This resulted in a total of 516 runs which used up a 
total of at least 130 days worth of CPU time (excluding initial tests and failed runs). All 
experiments were run on CalcUA, the cluster available at the University of Antwerp, 
which consists of 256 Sun Fire V20z nodes (dual A M D Opteron with 4 or 8 GB RAM), 
running SUSE linux, and Matlab 7.6 R2008a. Due to space considerations, only the 
results for the SI 1 (EE), and lift (LE) outputs are considered in this chapter. For all 
examples the input space is normalized to the interval [—1,1]. 

7.11 Discussion 

We now discuss the results of each problem separately in the following subsections. 

7.11.1 Ackley Function 

The composition of the final population for each run is shown in Figure 7.12 for Ex
tinction Prevention (EP) equal to true and EP=fa/se. The title above each sub figure 
shows the average and standard deviation over all runs. The first element of each vector 
corresponds to the first (top) legend entry. The error histogram of the final model of 
each run on the test data is shown in Figure 7.13. The population evolution for the run 
that produced the best model in both cases is shown in Figure 7.14. Figure 7.15 then 
depicts the evolution of the relative error (calculated according to equation 7.6) on the 
test set as modeling progresses (again in both cases, for the run that produced the best 
model). The lighter the regions in Figure 7.15, the larger the percentage of test samples 
that have low relative error (RE) (according to equation 7.6). 

^(y,y) = —=4 (7.6) 
1 + |y| 

Finally, a summary of the results for each run is shown in Table 7.1. The tabic 
shows the number of samples used (|^"|), the validation error (VE), the test set error 
(TE), and the run time for each experiment. All entries are averaged over 15 runs with 
the standard deviation shown in the adjacent column. The plot of the best model found 
overall is shown in Figure 7.16. 

Regarding the composition of the final population in Figure 7.12, we see that the 
results are somewhat mixed for EP—false. In some runs RBF models perform best, in 
others LS-SVM models. This is also reflected in the corresponding error histogram plot 
in Figure 7.13. The quality of the best model found in each run differs considerably 
between runs. In contrast, for EP=true, the results are more clear cut, RBF models 
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dominate in 14 of the 15 runs. This already demonstrates the usefulness of extinction 
prevention. Due to randomness in the initial population and genetic operators a model 
type may be driven extinct, unable to return. EP prevents this. In this particular case 
LS-SVM models generally perform best initially, pushing the RBF models out of the 
population. However, as more data becomes available (active learning), and as the hy
perparameter optimization continues, superior RBF models are discovered and quickly 
take over the population. This is also nicely shown in Figure 7.14. In both cases the 
RBF models are driven out of the population around generation 50. Though in the 
EP=true case the RBF models are able to make a re-appearance around generation 
100. 

Of course nothing prevents this process from recurring. The fact that the optimal 
solution changes with time is not a disadvantage and should actually be expected since 
the optimization landscape is dynamic (due to the incremental sampling). Without 
EP these oscillations are impossible and everything depends on the initial conditions. 
As a result the danger of converging to a poor local opt imum is considerably greater. 
Given the form of the Ackley function, we should really not be surprised that the RBF 
models end on top. The different radial basis functions that make up the RBF model 
(a local model) can be expected to match up quite well with the 'bumps ' of the Ackley 
function. 

If we assess the quality of the final models (Figure 7.15) we see that it performs 
very well. After 500 samples the model has an error smaller than 0.01 on 9 8 % of the 
test samples. More importantly, these results are consistent as can be seen from the 
EP=true plot in Figure 7.13. Actually, from an application standpoint consistency at 
this level (accuracy) is more important than consistency in model type selection. Since 
at the end of the day, from an application perspective, the accuracy of the model is 
typically most important, not its type. 

The natural question that remains, is how do these results compare with simply do
ing multiple homogeneous evolution (single model type, using the same GA settings) 
runs, one for each type separately? Those results are shown in Table 7 .1 . Studying 
the table we see that the HGA compares favorably. The accuracy of the final models 
are the essentially the same as those found by the best performing single model type 
run, while the variance on the results tends to be lower (EP=true). Of course this is 
paid for by an increase in computation time due to the increased population size of the 
HGA. Still, the HGA has a factor of 6 larger population size (90 versus 15) but requires 
only double the running time of the best performing homogeneous run (ANN). Also 
the total HGA running time is still less than the combined run time of all homogeneous 
runs. 
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7.11.2 Kotanchek Function 
The composition of the final population and final error histograms for each run are 
shown in figures 7.17 and 7.18. The population evolution and corresponding error 
evolution for the best run are shown in figures 7.19 and 7.20. The comparison with 
homogeneous evolution is shown in Table 7.2. 

The Kotanchek function is an interesting example since the GA has to 'discover ' 
that 3 of the 5 variables are irrelevant. Considering the composition of the final popu
lation the Kriging functions seem to be able to do this best in the EP=false case, with 
sporadic 'wins ' for rational functions. In the EP=true case the situation is different, ra
tional functions dominating all 15 runs. The fact that the rational functions succeed in 
doing this is thanks to a weighting scheme used in the genetic operators and described 
further in [274]. 

The usefulness of EP is demonstrated again as well. While the results of the best 
run for EP—false are better than the best run for EP=true (less samples), the former is 
much more a product of chance than the latter (which has lower variance). EP=true 
should still be preferred as it is more robust. Finally, the quality of the final models 
is excellent in all runs, and the performance and running time of the H G A remains 
competitive with the single model type runs. 

7.11.3 EM Example 

The composition of the final population for each run is shown in Figure 7.21, and the 
associated error histogram in Figure 7.22. The population evolution and corresponding 
error evolution for the best run are shown in figures 7.23 and 7.24. Table 7.3 summa
rizes the results and a plot of the best model can be found in Figure 7.25. Note that 
Table 7.3 shows the cross validation error (CV) instead of the validation error. 

The results are very clear cut, rational functions dominate in every run, easily 
reaching the accuracy requirements in about 200 data points (with the EP=true runs 
generally reaching higher accuracies). This is to be expected. The physical behavior of 
two inductive posts in a rectangular waveguide is well described by a quotient of two 
differential multinomials (the transfer function) and it is this function that needs to be 
modeled. Thus it is not surprising that rational functions do well since their form fits 
the underlying function. 

If we compare the H G A runs with the single model type runs we see significant im
provements. Interestingly, the HGA runs need roughly 33-25% less sample evaluations 
to reach the target accuracy, and do so in a fraction of the time (less then 8 minutes vs. 
an average of 43 minutes for the homogeneous runs). Thus here we have a strong case 
for the use of the HGA. 
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7.11.4 L G B B Example 

The composition of the final population for each run is shown in Figure 7.26 and the 
associated error histogram in Figure 7.27. The population evolution of the best run is 
shown in Figure 7.28. Table 7.4 shows the comparison with the homogeneous runs. A 
plot of the response can be found in Figure 7.29. 

Adaptive sampling was switched off for the LGBB example. The objective was to 
see what accuracy can be reached and what model type prevails within a fixed time 
budget. The LGBB example consists of a 3 dimensional data set and unlike the AF and 
EE examples there are no clues as to which model type is most adequate. Running the 
heterogeneous evolutionary algorithm it turns out that ANNs give the best fit overall 
(see Figure 7.26), achieving excellent accuracy. Changing the EP setting does not 
influence this, though the variance is lower for the EP=true case. 

Within the same time limits the models produced by the H G A are comparable 
in accuracy to the best performing homogeneous runs, which again demonstrates the 
usefulness of the HGA. 

Interestingly it turns out that the third dimension is negligible, the three slices in 
Figure 7.29 almost coincide. This was confirmed by using the SUMO model browser 
to fully explore the response. Thus we can safely conclude that side-slip angle has little 
or no effect on the lift on re-entry of the LGBB into the atmosphere. 

7.11.5 Boston Housing Example 

The final example is the Boston Housing data set, adaptive sampling was also switched 
off. The composition of the final population for each run is shown in Figure 7.30 and 
the associated error histogram in Figure 7.31. The population evolution of the best run 
is shown in Figure 7.32. Table 7.5 shows the comparison with the homogeneous runs. 

This is a somewhat curious example since it has high dimensionality (13), small 
support (506 tuples), and the types and ranges of the different inputs parameters vary 
greatly (e.g., input 4 (CHAS) is a boolean variable that is 1 if the tract borders the river 
and 0 otherwise while input 5 (NOX) is the nitric oxide concentration). Consequently, 
any analysis of this data should be preceded by a thorough statistical treatment (feature 
selection, variance analysis, etc.). We explicitly chose not to do this but take the data 
as is and treat is as black-box regression problem. 

The results are mixed (see Figure 7.30), though the HGA runs again outperform the 
homogeneous runs. (LS-)SVM and A N N models seem to be preferred over Kriging 
and RBF models but there is no evidence to distinguish between the models any further. 
Striking, though, is that about half of the final population consists of ensembles and that 
most of these ensembles turn out to be {ANN, RBF} pairs or multiple ANNs. Figure 
7.34 shows the evolution of the composition of the best performing ensemble. The 
popularity of ensembles in this case is in line with the authors ' previous experiences. 
When the individual model types are having trouble to fit a difficult response with none 
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really performing much better than the other, hybrids (ensembles) tend to do well since 
they can produce more complicated responses. It is a signal that none of the included 
model types are really fit for the approximation problem. 

Also striking (and interesting) are the oscillations in the population evolution (see 
Figure 7.32, or Figure 7.33 for a more marked example). It turns out that every run 
shows these oscillations between ensembles and one or two other model types. Inter
estingly these 'spikes ' occur every 10 or 7 generations. It remains unclear to the authors 
how these oscillations may be explained. This is an issue that is being investigated in 
more detail. 

7.12 Summary 

In summary the results for the different test problems are very promising and in line 
with previous results [267,273, 370, 371]. The results show a consensus about which 
model type to use in all test cases (ignoring the BH example for the moment) . In the 
case the consensus is not absolute (e.g., the EP=true run for the AF in Figure 7.12) the 
final model accuracies are essentially the same thus this is not really a problem from 
an application standpoint. More important is that the target accuracy has been reached 
and that all model types have been given a fair chance without having to resort to a 
brute force approach. 

In general we found the algorithm to be quite consistent across many runs. When 
variation does show up in the model selection results it typically is because two or more 
model types can fit the data equally well with only a minor difference in accuracy. This 
means that the GA may alternate between the different local optima, giving different 
model selection results, but still reaching the targets. The other reason is if the data 
is simply too difficult to fit using the methods included in the evolution. In this case 
ensembles may tend to do well. The BH example seems indicative of this situation. 

It is important to remind the reader, though, that the overall performance of the 
HGA will of course depend on the quality of the model types themselves, and more 
importantly, on the quality of the creation function and genetic operators (and ade
quacy of the chosen representation). Good results have already been obtained with the 
current implementations though there is still room for improvement. The final surro
gates are not neccessarily as refined as an expert in any one type would wish. Luckily, 
an advantage of the HGA based approach is that since the general algorithm is now in 
place, it becomes possible to focus on such improvements without requiring changes 
to the HGA itself. Specific improvements (e.g., devised by an expert in a certain model 
type) are straightforward to integrate into the existing genetic operators allowing an 
accumulation knowledge that will improve the overall quality of the models produced 
by the HGA. 

A next step is to further increase the number of test problems and, more impor
tantly, investigate the influence of the different parameters involved. In this respect the 
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migration interval and migration topology parameters are particularly important since 
they determine how the different model types interact. For example, if the migration 
interval is set too high, each deme will produce high quality models (most of the time 
is spent optimizing the parameters of a single model type) but there will have been 
very little competition between models. If it is set too low, the converse is true. More 
research is needed to to better understand this balance and investigate the impact of 
genetic drift. 

7.13 Application in Optimization 

In addition to the global modeling use case, initial tests have been done linking the 
HGA described here with the infill framework described in section 4.6. This allows 
for automatic model type switching during optimization (any model type that supports 
prediction variance can be used) and may be beneficial for computationally expensive 
codes. We briefly discuss this case in this section. 

7.13.1 Background 

Starting from an initial approximation of the design space, an infill criterion identifies 
new samples of interest (infill or update points) to update the approximation model. 
It is crucial in global SBO to strike a correct balance between exploration5 and ex
ploitation6. A well-known infill criterion that is able to effectively solve this trade-off 
is Expected Improvement (EI), popularized by Jones et al. [89, 378] in the Efficient 
Global Optimization (EGO) algorithm. 

While expected improvement is proven to be an efficient figure of merit, the quality 
of the surrogate model is still arguably the most important factor in the optimization 
process. The surrogate model of choice in the EGO algorithm is the kriging model as 
it provides the prediction variance needed by expected improvement. However other 
surrogate models such as Support Vector Machines (SVM), pure Gaussian Processes 
(GP), etc. are possible and may have improved accuracy on some problems. Unfortu
nately it is rarely possible to choose an appropriate surrogate model a priori. Typically, 
the behavior of the objective function is poorly understood or even unknown. In this 
case the automatic model type selection algorithm can be useful. 

7.13.2 Application 

To illustrate how the HGA may be used in an infill optimization framework we take a 
structural dynamics problem. The problem is the optimal design of a two-dimensional 
truss, constructed by 42 Euler-Bernoulli beams and a simplification of a truss type 

5cnhancing the general accuracy of the surrogate model 
6enhancing the accuracy of the surrogate model solely in the region of the (current) optimum 
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typically used in satellites [379]. More details are given in the next chapter in section 
9.4.2. 

The SUMO Toolbox is utilized to optimize the truss structure using the original 
expected improvement function as defined in section 4.6. The expected improvement 
function is optimized using the Dividing RECTangles (DIRECT) algorithm of Jones 
et al. [380] to determine the next sample point to evaluate. Whenever the DIRECT 
algorithm is unable to obtain a unique sample a fallback criterion is optimized. This 
fallback criterion represents the Mean Squared Error (MSE) between the current best 
surrogate model and all previous surrogate models that have been kept in the history. 
In effect, identifying locations in the domain where the prediction of surrogate models 
disagree on. 

The aforementioned configuration is reproduced three times with different surro
gate modelling strategies. The first two cases configure kriging as surrogate model 
of choice. More precisely, one time hyperparameters are obtained through maximum 
likelihood estimation (MLE) using SQPLab [381] (utilizing likelihood derivative in
formation). In the other, second, run, the hyperparameters of the kriging model are 
identified by Matlab's Genetic Algorithm (GA) toolbox guided by 5-fold cross val
idation. In the last, and final, configuration the surrogate model is produced by the 
evolutionary model type selection algorithm as described in this chapter. 

Note, as the EI approach is used for optimization only model types that support a 
point-wise error estimation (prediction variance) can be included in the EMS method. 
Thus, the surrogate model types that compete in the evolution are kriging models, 
Radial Basis Functions (RBF) and LS-SVMs (using [269]). 

Each of the three different use cases is allowed to run for 350 samples, in other 
words, the optimization process halts after 350 calls to the simulator. Finally, the tests 
are repealed 20 times to smooth out random effects. 

7.13.3 Results 

fhe average minimum function value at each intermediate dataset is shown in figure 
'•10. It is seen that the EMS algorithm is consistently better than the other two surro
gate modeling strategies, though the difference is quite small. Note that the evolution 
°f the minimum function value of the EMS algorithm is more smooth than, for in
stance, kriging (MLE). For the latter, the function value decreases in a stepwise way, 
while for the EMS algorithm other surrogate models than kriging are used whenever 
they are better in approximating the current set of samples, thus, a better function value 
Js found more often. 

More compelling is the amount of variance on the final optima. A boxplot of 
me final function value for the three surrogate modeling strategy is seen in Figure 
' • 11 . Kriging (GA) and the EMS algorithm are substantially more stable than using 
^nging (MLE), where the 0 parameters are optimized using the likelihood. The EMS 
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algorithm is also an improvement over kriging (GA) as the quantiles lie closer to the 
smallest function value found. 
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Figure 7.11: Box-and-whiskers plot of the final optimum 

The final best surrogate model is almost always an ensemble model, with only 1 
case out of 20 where a sole R B F model gives the best accuracy. Furthermore, the 
final ensemble models consist mostly of RBF models. The share of SVM models and 
kriging models in those ensembles is identical. 
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7.14 Conclusion 
A recurring problem in surrogate modeling is selecting the most adequate surrogate 
niodel type and associated complexity. In this chapter we explored an approach based 
on the evolutionary migration model that can help tackle this problem in an automatic 
way if little information is known about the true response behavior and there are no 
a priori model type requirements. In addition, we have illustrated the usefulness of 
extinction prevention and ensemble based recombination. Extinction prevention is a 
straightforward algorithm that prevents a species from disappearing from the gene pool 
at the expense of a minor cost (keeping 2 extra individuals per species 'a l ive ' ) . As a 
result, the optimal solution is able to change with time, making for a more flexible 
and adaptive system which, as demonstrated in the different examples, gives better and 
more consistent results. 

Future work consists of investigating the oscillations in the BH example, exploring 
different GA parameter values (role of the migration frequency, migration topology, 
etc.), incorporating more model types, and more advanced ensemble methods (e.g., 
stronger constraints on ensemble composition). As mentioned above, improvements 
to the genetic operators are ongoing in order to get more out of each model type. The 
utility of adding a penalty to the fitness function proportional to the model complexity 
and/or training time will also be investigated. Furthermore, we have been experiment
ing with sampling strategies that vary dynamically depending on the remaining sample 
budget and quality & type of surrogate currently used in the modeling process. The 
idea is to work towards an optimal interplay between sampling and modeling. E.g., 
initially the focus should be on exploration of the design space while, as accuracy of 
the models improves, the focus should shift towards refining the model in places where 
it is uncertain and ensuring the optima it exhibits are really true optima. Likewise, we 
are experimenting with dynamic model selection criteria. For example, if only little 
data is available cross validation type measures may be unreliable and it makes lit
tle sense enforcing problem specific constraints (e.g., the model response should be 
bounded between given bounds). However, when the data density is sufficiently high 
the opposite will be true. Thus there seems to be some intuition advocating the use of 
annealing type strategies. 
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Figure 7.23: EE: Population evolution of the best run (Left: EP=false, Right: EP=true) 
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1.55E-02 
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a 

2.83E-03 
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time (min) 
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2.15E+00 

1.44E+00 

1.07E+00 

Table 7.3: EE: Comparison with homogeneous evolution 
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Figure 7.25: EE: normalized plot of\S\\ | of the best model overall (HGAEP=t?ue> 3 slices for 
Distance) 
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Table 7.4: LE: Comparison with homogeneous evolution 
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Figure 7.29: LE: normalized lot of the best model overall (HGAEp=true, 3 slices for beta) 
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Figure 7.33: BH: Oscillations in the population evolution (HGAEP^-tiue) 



www.manaraa.com

EVOLUTIONARY M O D E L T Y P E S E L E C T I O N 7-49 

M M Ensemble 
• M l Knging 

i 1RBF 
I | LS-SVM 

20 25 30 
Generation 

2 5 

30 40 
Generation 

^ ^ H Ensemble 
M M Kriging 

I 1RBF 
I I LS-SVM 

Figure 7.34: BH: Composition of the best performing ensemble of the best run (Left: EP=false, 
Right: EP=truej 

Method 
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Table 7.5: BIl: Comparison with homogeneous evolution 
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Multi-Objective Modeling 

/ can teach anybody how to get what they want out of life. The problem is 
that I can 'tfind anybody who can tell me what they want. 

— Mark Twain 

8.1 Introduction 

As articulated a number of times in this dissertation, arguably the most crucial aspect of 
the surrogate modeling process is the assesmcnt and estimation of the surrogate model 
quality. This is also referred to as model validation, which Kleijnen and Sargent [185] 
define as the "...verification that a model within its domain of applicability possesses a 
satisfactory range of accuracy consistent with the intended application of the model.". 
The "intended application of the model" part is important. It is impossible to con
struct a proper model if the intended application, use, and accuracy requirements arc 
Poorly defined. Therefore the very first step of the surrogate modeling cxcercise is to 
clearly define the desired characteristics that the model should exhibit (smooth versus 
n on-smooth , interpolation versus regression, evaluation speed, data scalability, accu
racy bounds, etc.). This is the responsibility of the domain expert. Once these char
acteristics are known they can be used to drive hyperparameter optimization process. 
Typically this optimization process is formulated in a single objective way. Models 
a r e generated according to a single objective (accuracy). However, this requires an 
engineer to determine a single accuracy target and measure upfront, which is hard to 
do if the behavior of the response is unknown. In this chapter we investigate how a 
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multi-objective approach can be used to alleviate this problem and the related problem 
of multi-response modeling. 

8.2 The 5 percent problem 

Though previous experience recommends that a metamodel with normal
ized RMS E (RMSE divided by the sample range of responses) less than 5% 
and normalized MAX (MAX divided by the samples range of responses) 
less than 10% is acceptable for design space exploration at early design 
stages, there is no rigorously-defined guidance on model selection. Cur
rently, with RMSE and MAX we cannot tell "how accurate" one meta
model is, and whether it meets the requirement of designers; what we can 
do is only to compare the accuracy of different models. [9] 

Recall from section 3.2 that the model parameter optimization process is driven by a 
criterion £,, where S, constitutes three parts: 

€ = (A,e ,T) (8.1) 

with A the model performance estimator, £ the error (or loss) function used, and x the 
target value required by the user. In the simple case where A is just the in-sample error, 
the model selection problem simplifies to finding the optimal model type t* G T and 
hyperparameter assignment G* G Q such that 

£(/,*,e* (X>), f (*,))< * (8-2) 

The crucial problem is identifying suitable implementations for A, e and a target 
value for T. The three are closely linked but only the A-selection problem has been 
extensively studied theoretically [171,382] and empirically [170, 180]. The selection 
of £ and T is less appreciated and often overlooked, but equally important [383,384]. 
Selecting an error function e and required target accuracy T is difficult since it re
quires knowledge of the structure of the response and a full understanding of what the 
performance metric A actually measures. Failure to do so leads to misinterpretation, 
inappropriate application, ultimately resulting in a trial and error model generating 
procedure. 

This brings us to, what we have termed, "The 5 percent problem ". The phrase 
stems from an application where an engineer needed a replacement metamodel. When 
asked what model accuracy was required the answer was simply 5 percent. While this 
may seem like a straightforward, objective requirement, enforcing it in practice turned 
out to be difficult. The reason is twofold and is detailed below. 
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8.2.1 Choice of error function 

First, there is the choice of the error function e. Roughly speaking there are two cate
gories of error functions: absolute and relative. 

8.2.1.1 Absolute errors 

Absolute errors (e.g., Average Absolute Error (AAE), Mean Squared Error (MSE), 
°tc.) are often undesirable in an application context since they are not unit-free and 
depend on the specific prediction value of the response. On the other hand they are 
very popular in machine learning settings but not always rightly used. A good example 
is the Root Mean Square Error (RMSE), by far the most popular error function: 

RMSE(y,y) = J ^ X ( y ; - ^ ) 2 (8.3) 

where y, y are the real and predicted response values respectively. The main advantage 
°f the RMSE is that it is the best finite-sample approximation of the standard error 
v •& [y — y] and standard deviation (in the case of an unbiased model) [383]. However, 
its use is not recommended since it penalizes large errors too severely while virtually 
ignoring small errors. Such an error function is called pessimistic. Also it is unintuitive 
to interpret. The RMSE is often interpreted as the true arithmetic average euclidcan 
distance between the prediction y and the true value y. This is however not the case, 
the RMSE is really one ^l/n-th of this value and thus has no simple geometrical inter
pretation whatsoever. A better solution would be to use the Average Euclidean Error 
(AEE) as proposed by [383] 

AEE(y,y) = ~ jr y/iyt-y,)2 (8.4) 

However, while the AEE enjoys many desirable properties, it still suffers from 
outliers (i.e., it is also pessimistic, though less than the RMSE). In cases where this 
l s a problem alternative functions like the Geometric Average Error (GAE) and the 
Harmonic Average Error (HAE) [383] can be more useful. 

GAE (y,f) = Ifl^iyi-yW) («-5) 
. /=! 



www.manaraa.com

8-4 CHAPTER 8 

In contrast to the RMSE and AEE, the HAE is an optimistic error function since it is 
dominated by the small error terms. The HAE can be appropriate if the error fluctuates 
greatly over different runs. This property may be useful in the context of k-fold cross 
validation with relatively few samples. The GAE, on the other hand, is a balanced error 
function that suffers much less from extremes (large or small). The GAE, however, has 
as a disadvantage that if the error is zero in a single point, the overall error is also zero. 
This is of course may not be desirable. 

Many more absolute error variants exist and we do not intend to give an exhaustive 
overview. Rather we wish to illustrate that each function brings its own tradeoffs and 
interpretation depending on how the absolute differences |v, —yi\ are aggregated. In 
general though, absolute error criteria are not ideally suited for performance estimation 
of an approximation model due to their context dependence (i.e., x is hard to specify 
up front and depends on the units used). 

8.2.1.2 Relative errors 

Thus engineers typically prefer relative or percentage errors, e.g., 5%. A figure of 
5% implies some kind of global averaged relative error, but there are different ways 
to calculate relative errors (depending on what reference and aggregation function 
is used): Average Relative Error (ARE), Maximum Relative Error (MRE), Relative 
Squared Error (RSE), Root Relative Square Error (RRSE), Relative Absolute Error I 
(RAEI), Relative Absolute Error II (RAEII), Root Mean Square Relative Error (RM-
SRE), etc. [25,383]. 

A natural solution is to take the most intuitive error function, the ARE: 

ARE(y,y) = ̂ ±l-^=M ( 8 .7) 

By taking the true value as a reference the ARE results in an intuitively understand
able number. Multiplied by 100 it results in a natural percentage. However, taking the 
geometric or harmonic mean (resulting in the Geometric average Relative Error (GRE) 
and Harmonic average Relative Error (HRE) respectively) instead of the simple aver
age can also be interpreted as a global percentage error. But since ARE, GRE, and 
HRE treat different types of errors differently (e.g., ARE is more sensitive to large er
rors than GRE) care should be taken when interpreting a figure like 5%. In addition, 
the "%" suffix is sometimes also used when using, for example, RRSE (see below). 
This, however, should be avoided since it is confusing. 

The problem with the ARE is that care must be taken in its interpretation when the 
true function values v, are small or, in the extreme but not unlikely case, zero. Since 
then the error tends to infinity, giving a biased result. What is sometimes done to com
bat this is add one (+1 ) to the denominator to prevent division by zero. While this 
solves the numerical issue, the resulting error is an absolute-relative hybrid and be
comes impossible to interpret. A different solution is to scale or translate the response 
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to eliminate small absolute values (e.g., as proposed in [198]). However, the best scale 
factor is not always obvious and shifting the response can introduce its own problems. 
For example, figure 8.1 illustrates how a simple shifting of the response (+1000) can 
drastically improve the ARE value (3 orders of magnitude) for exactly the same model 
parameters (error measured in the samples). 

ARE = 9 4?e-02 „ „ „ „ „ „ 
, i i i i I ARE = 9 2BO-Q5 

Figure 8.1: Influence of shifting the response on the Average Relative Error 

Additionally, there is the well known issue of averaging the errors (relative or ab
solute). Since the mean is not robust it is easily skewed by outliers and can mask local 
errors that may be deemed problematic in isolation. Figure 8.2 shows an example using 
relative errors. The data in the figure are the result of a NIST study involving semicon
ductor electron mobility. The response variable is a measure of electron mobility, and 
the predictor variable is the natural log of the density. The fit is a rational function with 
a pole. Thus, since an engineer usually requires strict bounds on the maximum error it 
seems better to minimize the maximum error instead of the average (note that ARE ^ 
MRE). 

However, in the relative case, using a maximum aggregation function has its own 
counter-intuitive properties. For example, figure 8.3 illustrates how the zero function 
has a lower MRE than a model which overshoots the data, but else seems like a rea
sonable fit '. This property is particularly problematic if the model parameter space is 
searched automatically (hyperparameter optimization). In this case the optimization 
algorithm is easily deceived into generating flat models. 

One would be tempted to resort to using the Maximum Absolute Error (MAE) 
instead. Since while it may be difficult to give a priori average error targets, giving 
maximum absolute error bounds is often easier since it can be related more directly to 
the application. However, the MAE is not a satisfactory solution either. First of all, 

In this case the samples aic noisy but the same phenomenon can occur with noise free data and a 
validation set 
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Figure 8.2: Comparison of the Maximum Relative Error and the Average Relative Error 

like any absolute error, it requires knowledge of the full range of the response. Also, it 
is not relative, meaning a deviation of 5 on a response value 1000 is considered worse 
than a deviation of 3 on a value of 0.5. Furthermore, enforcing a MAE is equivalent to 
restricting all fitted response values y to lie inside the tube defined by [y — MAE,y + 
MAE]. This requirement can be too strict if the response contains regions that arc very 
hard to fit (e.g., discontinuities), information that is not always available. 

Another approach then, is to use the RRSE function, related to the popular R 
criterion. In this case the deviation from the mean is used as the reference value. 

The RRSE is intuitively attractive since it measures how much better a fit is over 
the most simple model possible: the mean. Also it docs not become problematic for 
small absolute values of v,-. Unfortunately, the problem with the RRSE is that it gives 
a pessimistic estimate of the error if the response that needs to be fitted is very smooth 
(i.e., the mean is already quite a good fit). Thus an understanding of the structure of 
the response is needed to properly interpret the RRSE value. The RRSE is also less 
intuitive for an engineer since it measures the improvement over the average model 
rather than the quality of fit directly (making a good choice of x harder). 

An improved function that is less sensitive to large errors and has some other at
tractive properties is given in [383], the Bayesian Estimation Error Quotient (BEEQ): 
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Figure 8.3: Comparison of the Maximum Relative Error over different models 

BEEO(y,y)= f l lLU\yi-yi\ 
^ i 51/= i \yi-y\ J 

However, like the GAE it will predict an error of zero overall if just a single point has 
an error of 0. 

One could continue discussing different error functions (e.g., those based on the 
medain or mode) but it should be clear now that each error function has its own char
acteristics and that relative errors are not always as context free as one might assume 
at first. While the examples given here are quite simple, they are illustrative of the 
greater complexities that arise when combining an error function with a model selec
tion metric. Also note that these subtleties are less a problem in classification (where 
most research on model selection is conducted). The concept of a good classifier is 
typically much more intuitive to grasp and define by a domain expert than in the case 
°f regression. 

Remark that the error function also influences choice of sampling strategy. For 
eXample if the error measure dictates that it is important that the optima of the model 
a r e captured accurately, one should make sure the sampling strategy employed will 
sample at those locations. Actually it turns out that in most cases a sampling algorithm 
can be formulated as a model selection critera and vica versa. 

8.2.2 Choice of niodel selection metr ic 

Assuming the choice of error function (and target value) can be decided upon there 
I s still the problem of selecting a measure for estimating the generalization capabil-
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ities of a model (cross validation, bootstrap, validation set, jack-knife, etc.). This is 
the well known problem of model selection and has been discussed at length else
where [85, 171, 180, 190,385]. A good high level introduction is given in [386]. The 
point this chapter attempts to make is that it is far from obvious which method to 
select that, when minimized, produces a model that an engineer is satisfied with. Sim
ply using the in-sample error is useless since it does not account for over-fitting and 
is meaningless when used with interpolating methods (e.g., Kriging). Measures like 
AIC and its variants (BIC, NIC, ...) and the methods from statistical learning theory 
(Vapnik-Chervonenkis (VC) Dimension, etc.) are more advanced in that they take the 
complexity of the model into account and have solid foundations in information theory. 
Unfortunately, an AIC value can only be interpreted relative to another value and has 
no meaning on its own. They also mean very little to a domain expert. 

A validation (hold-out) set is a better solution but it means there is less data avail
able for training. Also, a hold-out error can can deceive the hyperparameter optimiza
tion if chosen poorly or if only a few points are available. For example, figure 8.4 gives 
a simple example where two models acheive a perfect validation score, yet only one 
is correct. This is of course an extreme example but similar problems are encountered 
with real data, particularly as the dimensionality and data sparsity increases. 

* 
o 

- Model 1 
Model 2 
Training points 
Validation points 

0.8 -

0.6 -

0.4 -

0.2 -

1 1 1 1 1 

- 6 - 4 - 2 0 2 4 6 
X 

Figure 8.4: A validation set that is unable to distinguish between two models, thus potentially 
misleading the hyperparameter optimization. 

The cross validation error (and its extreme version, the Leave-One-Out error), is a 
popular compromise, but it too depends on the data distribution [385,387] , can give 
misleading results [9], and is expensive to compute (the bootstrap even more so). Also 
there is the question on how to select the folds (randomly, evenly spread, etc.). Ad
ditionally one could argue the different cross validation variants should be interpreted 
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as measuring sensitivity to loss of information rather than approximation accuracy. Fi
nally there is the added complication of noise in the data and/or in the generalization 
estimator (e.g., /fc-fold cross validation). Since we only consider deterministic computer 
experiments noisy data is usually not an issue2 . However, when dealing with measured 
data or stochastic simulations this adds an extra layer of complexity. 

Yet a different approach is to employ Bayesian statistics (sec the work by O'Hagan 
et. al. [125]). Through Bayesian inference one can exactly quantify the uncertainty or 
confidence one has in a particular model. This is usually very useful from an applica
tion standpoint but is only possible with specific model types. 

The only true, unbiased test for model quality would be to assess the model on a 
very dense, independent test set or analytical solution. However, for any real problem 
this is not a feasible option since data is too expensive and an analytical solution is not 
available. 

8.2.3 The need for handling multiple criteria 

In sum, as it should be clear now, it is hard to agree upfront on a single requirement that 
the final replacement metamodel must respect. The fundamental reason is that an ap
proximation task inlierently involves multiple, conflicting, criteria. [383] summarizes 
this particularly succinctly: 

It is an illusion that performance evaluation can be done completely fairly 
and impartially. This is partly because simple metrics cannot capture a 
complete picture of the performance of an estimation algorithm and those 
that are more complete [.. J are more complex and subject to subjective in
terpretations. Also, use of any metric in performance evaluation implicitly 

favors the estimator that tries to optimize this same metric. 

A similar observation is made in [5]: 

The goodness of a metamodel may not be dictated by the same perfor
mance measure but could depend on several measures. For instance, when 
there are many stakeholders involved in the design process, it is common 
that these are interested in different performance measures. 

Thus what usually happens in practice is the following: (1) a best effort is made to 
identify a suitable model selection metric, error function and targets; (2) simulations 
are performed, the model is generated and delivered to the engineer together with some 
statistical test results (e.g., different error metrics); and (3) the engineer visually in
spects and explores the model and decides if it is satisfactory. If not the process must 
b e repealed. 

In some cases disci ctization and convergence noise may be piescnt, the magnitude depending on the 
application. 
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While the final evaluation stage by a domain expert should always be performed, 
it would be advantageous if the different desired criteria could be enforced froin the 
start. This can be done in three main ways: 

1. the different criteria (objectives) are combined into a single, global criterion 
which is then used to drive the model generation 

2. the different objectives are enforced sequentially in a multi-level process 

3. the different objectives are enforced simultaneously through a multiobjective ap
proach 

The first option is the easiest and allows existing algorithms to be re-used as is. An 
example of such scalarization is the geometric mean approach used by Goel et al. in 
[87]. However the problem remains of choosing an appropriate combination function 
(and its interpretation) and requiring an understanding of the ranges and nuances of the 
different member functions. Thus the problem is simply moved to a higher level. 

The second option is a sequential or milestone approach. Multiple criteria are 
supported by specifying different hierarchical levels L\,...,Li. that must be reached in 
succession. For example, first the hyperparameter optimization process must produce 
a model that satisfies L\ (e.g., a ARE of 5%). Once this target is reached, and only 
then, is the following level Li checked (e.g., a M R E of 10%). Thus, by sequentially 
working towards subsequent milestones, multiple criteria can be incorporated. The 
potential problem of this approach is that dependencies and tradeoffs between criteria 
can cause a deadlock (e.g., reaching one level means violating another). A different 
way to interpret this is as a constrained optimization problem in the hyperparameter 
space, each level adds a constraint. Care must be taken that there is at least one fea
sible region. Also the task for the optimizer (over the model parameters) becomes 
considerably more difficult since the optimization landscape may change suddenly and 
drastically when a change in level takes place. 

The third solution is to tackle the problem directly as a dynamic multiobjective 
optimization problem in the hyperparameter space (recall that due to the incremental 
sampling the optimization surface is dynamic and not static). Each criterion becomes 
an objective and standard ranking methods are used to identify the Pareto-optimal set. 
The disadvantage here is that there is no longer the luxury of having a single, un
ambiguous best solution. However, since we noted above that such a linear ranking 
makes no sense this should come as no surprise. The advantage is that the problem 
can be tackled directly using standard algorithms. From the final Pareto set the user 
is then able to extract knowledge about the problem and make a better decision when 
choosing the final solution. In addition, the final Pareto front enables the generation of 
diverse ensembles, where the ensemble members consist of the (partial) Pareto-optimal 
set (see references in [87,358,388]) . In this way all the information in the front can 
be used. An added advantage of using ensembles is that it allows the calculation of the 
prediction uncertainty which is very useful for an application. 
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Finally, one may imagine different hybrid combinations of the three methods men
tioned above. For example, the multiobjective approach where the number of objec
tives varies dynamically. For example, when only little data is available it makes no 
sense to enforce application specific criteria, or force the model response into partic
ular bounds. That makes more sense when sufficient data is available and the model 
uncertainty has been reduced. Other combinations are possible but this is a topic that 
has seen little research and that goes beyond the scope of this chapter. Rather we shall 
concentrate on the multiobjective approach. 

8.3 Modeling multiple outputs 

The previous section described how a multiobjective approach to global surrogate mod
eling can help solve the 5 percent problem. A second use case is when dealing with 
multi-output systems. It is not uncommon that a simulation engine has multiple outputs 
that all need to be modeled [8, 129]. For example, the combustion problem described 
m [389] has both a chemical and temperature source term that needs to be modeled. 
Also many Finite Element packages generate multiple performance values simultane
ously. 

The direct approach is to model each output independently with separate mod-
e l s (possibly sharing the same data). This, however, leaves no room for trade-offs 
nor gives any information about the correlation between different outputs3 . Instead 
°f performing two modeling runs (doing a separate hyperparameter optimization for 
each output) both outputs can be modeled simultaneously if models with multiple out
puts are used in conjunction with a multiobjective optimization routine. The resulting 
Pareto front then gives information about the accuracy trade-off between the outputs in 
hy per parameter space and allows the practitioner to choose the model most suited to 
the particular context. More arguments, of essentially the same discussion, are given 
m [391]. 

Again, multi-output Pareto based modeling enables the generation of diverse en
sembles. This is a popular approach in rainfall runoff modeling and model calibration 
in hydrology [67,392] . Models are generated for different flow components and/or 
derivative measures and these are then combined into a weighted ensemble or fuzzy 
committee. A Pareto based approach to multi-output modeling also allows integra
tion with the automatic surrogate model type selection algorithm described in chapter 
'• This enables automatic selection of the best model type (Artificial Neural Network 
(ANN), Kriging, Support Vector Machine (SVM), ...) for each output without having 
to resort to multiple runs [370, 393]. This is illustrated in figure 8.5. 

P ° r example, it is well-known that in linear regression analysis (multivariate) Generalized Least Squares 
Ji LS) dominates (in a Pareto front sense) Ordinary Least Squares (OLS) in linear regression analysis [8]. 

he downside that GLS is more complicated is mitigated by Rao*s theorem [390] that shows that GLS 
"Uces to OLS computed per output if the same design matrix is used. 
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Figure 8.5: Multi-objective model generation with automatic model type selection for each 
output. 

8.4 Related work 

There is a vast body of research available on single objective hyperparameter optimiza
tion strategies and model selection criteria for different model types: [180, 182, 183, 
191,345-347] and the extensive work by Yao et. al. [350,351] . Many authors have 
noticed the problems with single objective hyperparameter optimization but it is only 
very recently that multiobjective versions of classical machine learning methods have 
been presented [394—397]. An extensive and excellent overview of the work in this area 
is given by Jin et. al. in [388] and the book (edited by Jin) [398]. By far the majority 
of the cited work uses multiobjective techniques to improve the training of learning 
methods. Typically an accuracy criterion (such as the validation error) is used together 
with some regularization parameter or model complexity measure (e.g., the number of 
support vectors in SVMs) in order to produce more parsimonious models [384]. Other 
criteria used include: sensitivity, specificity, interpretability, and number of input fea
tures [388,395] . 

It seems less work has been done on high level objectives (with error functions 
and generalization estimators in particular) that do not depend on a particular ma
chine learning method. [399] optimize an accuracy metric (the RMSE) together with 
an application specific Return metric useful for stock market forecasting. An example 
of the use of multiple error measures (and incidentally one of the first formulations of 
multiobjective learning) is [400] who minimized the Z.2-norm, the L«,-norm and a com
plexity measure. Unfortunately, a single-objective GA was employed to perform the 
optimization, resulting in only a single solution. [401] also give an example with two 
error functions, the Euclidean and robust error which they use to fit a noisy sinusoid 
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with an ANN. 
Few references are available that explicitly deal with the trade-offs between dif

ferent error functions for surrogate modeling. [384] agree that determining the error 
function is key but do not consider the problem any further. [402] give an extensive 
treatment of 15 popular error functions for time series extrapolation but is of little 
use for regression. A more relevant and extensive overview is given by Li and Zhao 
in [383] who discuss many practical metrics for performance estimation in general and 
propose a number of new ones. A more restricted and philosophical discussion is given 
m [403]. The previous references are mainly theoretical. Empirical results on perfor
mance estimation are harder to find. One example is [404] who compare four different 
error functions used for neural network classification training. 

Another topic that has been the subject of extensive research is that of multiob
jective surrogate based optimization (MOSBO). Surrogate methods are widely used 
for the optimization of expensive functions [405]. While initially their use has been 
constrained to the single objective case, an increasing number of results are being re-
Ported in the multiobjective case. An example is the work on statistical improvement 
by Keane et. al. [260] and ParEGO [259], the multiobjective version of the popular Ef
ficient Global Optimization (EGO) approach [89]. Another example is the application 
to parameter optimization of earth system models in [406], for crashworthiness design 
optimization in [407], for robust optimization in [98], and for thin wall structure opti
mization in [408]. The well known NSGA-II algorithm [409] has also been extended to 
incorporate surrogate models [261,410]. In this context some work has also been done 
°n comparing different performance measures for use in MOSBO [352,411] . [352] 
eomparc different performance criteria for improving metamodel based optimization. 
1 hey also "...recognize that in order to obtain desirable information or knowledge 
about a response surface, multiple performance measures taken in concert may be nec-
essary\" Unfortunately they stop there and do not discuss the issue any further. Though 
the research into MOSBO is still young, an excellent overview of current research is 
already available in [262]. 

In this chapter we stress the importance of a critical analysis of performance es
timation criteria and the associated trade-offs when generating surrogates (optimizing 
the hyperparameters). In particular, a founded choice of error function and target is of
ten overlooked and performance estimation is done in a more ad hoc manner [22.24] . 
constrained to a single objective [19 ,23 ,25] , or done a posteriori (after the model 
Parameters have been fixed) to compare different models [19.412], While the implica-

l°ns and trade-offs of different performance criteria are well described in the statistics 
i m m u n i t y (e.g., [402]), the resulting insights and possible solutions can use more 
visibility. 
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8.5 Applications 

This section presents some concrete illustrations of the ideas discussed in the previous 
sections. This section will focus on multi-output modeling and multi-output model 
type selection. An application of multi-criteria model selection will be discussed in 
chapter 9. 

8.5.1 Analytic function 

8.5.1.1 Background 

To easily illustrate the concepts and potential problems we first take a predefined ana
lytical function with two input parameters X] ,X2 and two responses y\ ,y>2'-

yi(fi 
2^2 (i-xiY + ioo(x2-xi) (8.10) 

yz(x) -20 • exp —0.2 
N 

• £ * ? - e x p ( -•Y4cos(2jz-xi) ) + 2 0 + e (8.11) 
7=1 /'=! 

So f(x\ ,X2) = [>'] ,yi] with x; G [—2,2] and d = 2. Readers may recognize these 
two responses as representing the Rosenbrock and Ackley functions, two popular test 
functions for optimization. Plots of both functions are shown in figure 8.6. We choose 

-**^*m>K,^m<%&«. 

- 2 - 2 

Figure 8.6: The Rosenbrock (left) and Ackley (right) functions 

this combined function since it is an archetypal example of how two outputs can differ 
in structure. Thus it should show a clear trade-off in the hyperparameter space when 
modeled together (i.e., a model that accurately captures y\ will be poor at capturing )'2 
and vica versa). 
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It is important to stress that we are not interested in optimizing these functions 
directly (as is usually done), rather we are interested in reproducing them with a sur
rogate model (with two inputs and two outputs), using a minimal number of samples. 
Thus the problem is effectively a dynamic multi-objective optimization problem in the 
hyperparameter space. 

8.5.1.2 Experimental Setup 

We start with the multi-objective hyperparameter optimization problem as a first use 
case. The Kriging [270] and NSGA-II plugins were used. The correlation parame
ters (0) represent models in the population. Following general practice, the correlation 
function was set to Gaussian, and a linear regression was used. Starting from an initial 
Latin Hypercube Design of 24 points, additional points are added each iteration (us
ing a density based active learning algorithm) up to a maximum of 150. The density 
based algorithm was used since it is shown to work best with Kriging models [142]. 
The search for good Kriging models (using NSGA-II) occurs between each sampling 
iteration with a population size of 30. The maximum number of generations between 
each sampling iteration is also 30. 

As second use case for this analytical problem we consider the automatic model 
type selection plugin. The following model types were included in the evolution: 
Kriging models , single layer ANNs (based on [413]), Radial Basis Function Neural 
Networks (RBFNN), Least Squares SVMs (LS-SVM, based on [269]), and Rational 
functions. Together with the ensemble models (which result from a heterogeneous 
crossover, e.g., a crossover between a neural network and a rational function), this 
makes that 6 model types will compete to fit the data. In this case, the multi-objective 
GA implementation of the Matlab GADS toolbox is used (which is based on NSGA-
11). The population size of each model type is set to 10 and the maximum number of 
generations between each sampling iteration is set to 15. Again, note that the evolution 
resumes after each sampling iteration. In all cases model selection is done using the 
Root Relative Sqmire Error (RRSE) on a dense validation set. 

8.5.1.3 Results 

two snapshots of the Pareto front at different number of samples are shown in figure 
•'• The full Pareto trace (for all number of samples) is shown in figure 8.8a. The 

hgures clearly show that the Pareto front changes as the number of samples increase, 
thus the multi-objective optimization of the hyperparameters is a dynamic problem, 
and the Pareto front will change depending on the data. This change can be towards 
a stricter trade-off (i.e., a less well defined ' e lbow' in the front) or towards an easier 
trade-off (a more defined ' e lbow' ) . What happens will depend on the model type. 

From the figure it is also immediately clear that the Rosenbrock output is much 
easier to approximate than the Ackley output. Strangely though, there seems to be 
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37 samples 107 samples 

Validation error on Rosenbrock (RRSE) Validation error on Rosenbrock (RRSE) 

Figure 8.7. Two snapshots of the Pareto front (during the model parameter optimization) at 
different sampling iterations (AF) 

(a) With sample selection (up to 150 samples) (b) Without sampling (brute force hypcrparamctci 
search at 124 samples) 

Figure 8.8: Pareto front search traces (AF) 

a discontinuity in the front. The Pareto front is split into two parts and as sampling 
proceeds the algorithm (NSGA-II) oscillates between extending the left front over the 
right front (or vica versa). The full Pareto trace in figure 8.8a also shows this. 

To understand what is causing this behavior, a brute force search of the hyperpa
rameter space was performed for a fixed LHD of 124 sample points. The space of all 
possible 0 parameters was searched on a 100x100 grid with bounds [-4 3] (in logxo 
space) in each dimension. Simultaneously an extensive NSGA-II Kriging run was per
formed on the same data set for 450 generations. In both cases a dense validation set 
was used to calculate the accuracy of each model. The combination of both searches 
(for both outputs) is shown in figure 8.9 (note that the RRSE is in log scale). The 
brute force search of the 0-surface also allows the calculation of the true Pareto front 
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Figure 8.9: Kriging 6-surface with the NSGA-II search trace (AF, left: Rosenbrock, right: 
Ackley) 

(by performing a non-dominated sorting). The resulting Pareto front (and the next 119 
fronts, these are shown for clarity) are shown in figure 8.8b. 

Studying the surfaces in figure 8.9 reveals what one would expect intuitively: the 
Rosenbrock output is very smooth and easy to fit, so given sufficient data a large range 
°f 0 values will produce an accurate fit. Fitting the Ackley output, on the other hand, 
requires a much more specific choice of 6 to obtain a good fit. In addition both basins 
°f attraction do not overlap, leading to two distinct optima. This means that (confirm
ing intuition) the 0-value that produces a good model for yi produces a poor model for 
3>2 and vice versa. Together with figure 8.8b this explains the separate Pareto fronts seen 
in figure 8.7. The high ridge in the Ackley surface makes that there are no compromise 
solutions on the first front. Any model whose performance on y2 would lie between 
the two separate fronts would never perform well enough on yi to justify a place on the 
first front. Thus, the fact that NSGA-II does not find a single united front is due to the 
structure of the optimization surface and not due to a limitation of NSGA-II itself. 

The analytic problem was also tackled with the automatic model type selection 
algorithm described in [267]. This should enable the automatic identification of the 
most adequate model type for each output without having to perform separate runs, 
figure 8.10 shows the full Pareto search trace for the test function across all sampling 
iterations. 

The figure shows the same general structure as figure 8.8a: there is a strong trade
off between both outputs resulting in a gap in the search trace. If we regard the 
model selection results we find they agree with intuition. The Rosenbrock function 
is very easily fit with rational functions, and its smooth structure makes for an excel
lent approximation with almost any degree assignment (illustrated by the straight line 
at roughly 10~7 on the x-axis). However, those same rational models are unable to 
Produce a satisfactory fit on the Ackley function, which is far more sensitive to the 
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Figure 8.10: Heterogeneous Pareto trace (AF) 

choice of hyperparameters. Instead the LS-SVM models perform best, the RBF kernel 
function matching up nicely with the different 'bumps ' of the Ackley function. 

Thus, we find the results to agree with intuition. The Rosenbrock function is better 
approximated with a global model since there are no local non-linearities. While the 
Ackley function benefits more from a local model, and this is exactly what figure 8.10 
shows. Note the diverse front shown in the figure now allows the generation of a diverse 
ensemble (further improving accuracy) using standard ensemble techniques (bagging, 
weighted, etc.). 

8.5.2 Low Noise Amplifier 

8.5.2.1 Background 

As a second application we revisit the LNA modeling problem from chapter 5. Recall 
that the performance figures of a LNA (e.g. voltage gain, linearity, noise figure, etc.) 
can be determined by means of computer simulations and are functions of the design 
parameters (e.g. width and length of transistors, bias conditions, values of passive 
components) [268]. The goal of the design process is to figure out one or more sets 
of design parameters resulting in a circuit which fulfills the specifications, i.e. con
straints given on the performances. For this example we now consider the modeling 
of the performance figures directly. We consider the two-dimensional case where the 
power consumption P and third-order linearity I1P3 are approximated in function of 
the transistor width W and the inductance Lm. 
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8.5.2.2 Experimental setup 

The same settings were used for this problem as for the analytical function, except that 
the sample selection loop was switched off and LS-SVM models were used to fit the 
data (instead of Kriging). Instead of sampling, a 122 full factorial design was used. 

8.5.2.3 Results 

The analytic function is of course just a synthetic example, but it is useful as an il
lustration and for pointing out potential problems. When we now turn to the LNA 
problem we shall see that the same kind of problems can arise when modeling real 
data. Figure 8.12a shows the search trace of an LS-SVM hyperparameter optimization 
run using NSGA-II (RBF kernel, optimizing c and o"). Of course the trade-off is not 
as extreme as with the analytic example but we do note some similarities: one output 
(P) is significantly easier to model than the other and there is again a gap in the Pareto 
front. A brute force search of the LS-SVM hyperparameter space (with the NSGA-II 
results overlaid) confirms this (figure 8.11). It is also interesting to compare figure 8.11 
with figure 8.9. Both figures are in line with the authors' experience that optimizing 
the Kriging 9 parameters is typically harder than selecting good values for c,o~. Our 
experience is that the 6 optimization landscape is more rugged, multi-modal, and more 
sensitive to the data distribution (see also the discussion in [142]). On the other hand, 
it is usually quite easy to generate an LS-SVM that captures the trends in the data with
out being too sensitive to the data distribution. An added benefit of SVM type models 
is that the number of hyperparameters is independent of the problem dimensionality 
(unlike Kriging). 

spread spread 

Figure 8.11: SVM (c,<x)-surface with the NSGA-II search trace (LNA, left: P, right: IIP3) 

Finally, we can also apply the automatic model type selection algorithm to the LNA 
data. The resulting search trace is shown in figure 8.12b. Again, note the similarity 
With figure 8.10. However, contrary to the previous problem, we see that in this case 
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Figure 8.12: Pareto front search traces 

including different model types can actually alleviate the trade-off in the data. It turns 
out that while LS-SVM models have problems capturing both outputs accurately, the 
Kriging models are able to do so, producing a single best model for both outputs. Again 
the almost straight line at 1 0 - 8 indicates that the P output is extremely easy to fit, a 
wide range of hyperparameters will produce a good fit. 

8.5.3 Automotive problem 

The third example is an application from the automotive industry (see [25] for details)-

8.5.3.1 Background 

Today the early concept phase of a car body development process is marked by the 
optimal coordination of design specifications with the requirements on the mechanical 
behavior of the structure as well as on the feasibility. This planning process is repetitive 
for the same body parts and the solution finding is carried out mostly by experience 
with an additional virtual tryout afterwards in order to improve the solution. The use 
of surrogate modeling can enable an early feasibility prediction of body parts. 

The geometry of a B-pillar bottom of a side frame is shown in figure 8.13. There 
you have a recurring feasibility challenge in sheet metal forming that can be explained 
by radii, depths and angles as experience shows. Which of these geometry parameters 
and in which combination they have an effect on the feasibility is, however, intuitively 
hard to predict. For simulation purposes the door entry area can be separated from the 
side frame by simple boundary conditions without major restrictions for the validity of 
the analysis but computing times considerably go down. 
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Figure 8.13: B-pillar bottom of a side frame [25] 

The entry angle <X\, opening angle ct2, frame depth h and entry radius /-, have been 
chosen as geometry parameters (see [25] for details). In addition, for every geometry 
constellation the blank boundary was determined so that the forming result was opti
mal. Additional process parameters, like draw bead or blank holder forces, have not 
been used. So there were six parameters that have been taken into account. With these 
input quantities a sampling based on a LHC was created. Maximum scaled distances of 
the strain states to the forming limit curve and a maximum thinning limit respectively 
w e r e chosen as output quantities indicating feasibility. The data sampling phase re
sulted in 1998 data points evaluated that were suitable for modeling. The overall target 
tor this particular problem setting was to predict a given set of geometry parameters 
a s feasible, i.e., to predict the existence of cracks (cracking output) or unacceptable 
thinning (thinning output). 

*»-5.3.2 Experimental setup 

Both outputs shall be modeled together using the A N N and LS-SVM plugins of the 
SUMO Toolbox. The A N N models are based on the Matlab Neural Network Toolbox 
and are trained with Levenberg Marquard backpropagation with Bayesian regulariza
tion [271,272] (300 epochs). The topology and initial weights are determined by a 
G A . The LS-SVM models arc based on the LS-SVMlab toolbox plugin [269] and the 
hyperparameters arc searched in log^o space with a G [—4,4], c G [—5,5] (an RBF ker
nel is used). The multiobjective algorithm used is the one implemented in the Matlab 
GADS toolbox which, in turn, is based on NSGA-II . The population size is set to 10. 
^or comparison each output will be modeled separately as well (single objective). 

In all cases the metric used to drive the hyperparameter optimization is the Average 
Relative Error (ARE) on 5-fold cross validation. For the single objective runs the 
timeout was 25 generations, for the multiobjective runs the timeout was 50 generations. 



www.manaraa.com

8-22 CHAPTER 8 

8.5.3.3 Results 

Figure 8.14 shows the final error curves after the SUMO Toolbox has terminated. A 
point is plotted for each time the toolbox finds a model that improves on the previous 
model. As can be seen from the figure, the ANN models clearly outperform the SVM 
models, especially for the cracking output. One could argue the poor performance 
of the LS-SVM models is due to poor hyperparameter optimization. However, this is 
not the case. For reference a brute force search of the hyperparameter landscape was 
conducted on a 50 by 60 grid. This is shown in figure 8.15 (bounds in log\o scale, the 
white crosses show the area explored by the SUMO Toolbox). The minimum found 
through this search: 

/ c r a c*/„*( -0 .1600 , -1 .4993) = 0.1348 

fthinningi.0, - 2 . 9 9 9 6 ) = 0.0730 

is comparable to the minimum found by the SUMO Toolbox: 

/ c r a c w„*(-0 .2173,0 .2978) = 0.1280 

/thinning (0.0423,1.0948) = 0.0741 

Thus the hyperparameter optimization is not to blame (remember that the cross 
validation procedure introduces some noise into the surface). A more extensive cross 
validation (15 folds) was also done on the final best model in each case (table 8.1). As 
can be seen, the accuracy remains unchanged. 

ANN 
LS-SVM 

cracking 

0.0414 
0.1305 

thinning 

0.0325 
0.0741 

Table 8.1: ARE on 15-fold cross validation of the final models (automotive example) 

The poor performance of SVMs in this case is in line with the author's previous 
experience. We found SVM models to require too much data when a non-linear, noise-
free response needs to be fitted smoothly and accurately. In those cases, SVM models 
are very good at fitting the non-linear regions but generate unwanted 'ripples' in the 
regions where the response needs to be smooth or data is sparse. ANN models on the 
other hand, are able to adapt much better to the heterogeneity of the response. The 
sigmoid transfer functions allow for high non-linearity, while proper training (e.g., 
through the use of regularization) ensures a smooth fit in the sparse regions. 

Figure 8.16 shows the full trace of the multiobjective hyperparameter optimization. 
In this case the model generation is driven by a 2-objective (the cross validation score 
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Figure 8.14: Model accuracies in the single objective case (left: cracking, right: thinning) 

Hyperparameter optimization surface (ARE) Hyperparameter optimization surface (ARE) 

Figure 8.15: SVM hyperparameter optimization surface with the NSGA search trace (left: 
cracking, right: thinning) 

on each output) optimization algorithm. In both cases it is immediately clear that there 
is no real Pareto front, a single best model can be identified in each case. Thus this 
teaches us that there is a very strong correlation between both outputs and that good 
Performance on one output, implies good performance on the other. This is actually to 
oe expected since cracking and thinning are closely related (as can also be seen from 
figure 8.15). 

Of course this is not always the case (see for example [393]). It is not always clear 
how much the outputs are really correlated, or how much one quality metric influences 
another (in the case of multiple metrics). We argue that in those cases a direct mul
tiobjective approach should be considered. It is guaranteed to give at least as much 
information as doing multiple single objective runs for about the same computational 
cost (which is still outweighed by the cost of the simulation). Also, it gives the engi
neer more flexibility and is a cleaner approach than manually combining the multiple 
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Cross validation error on thinning (ARE) Cross validation error on thinning (ARE) 

Figure 8.16: Model accuracies in the multiobjective case (left: ANN, right: SVM) 

objectives into a single formula. 

8.5.4 Langley Glide-Back Booster 

8.5.4.1 Backgrond 

The last application is a modeling problem from aerodynamics (see also section 7.8.4). 
We use it to focus on the automatic model type selection per output. NASA's Langley 
Research Center is developing a small launch vehicle (SLV) [376] that can be used 
for rapid deployment of small payloads to low earth orbit at significantly lower launch 
costs, improved reliability and maintainability. In particular, NASA is interested in 
the aerodynamic characteristics (lift, drag, pitch, side-force, yaw, roll) as a function 
of three inputs (Mach number, angle of attack, and side slip angle). Simulations are 
performed with a Cart3D flow solver with a running time of 5-20 hours on a high 
end workstation. A fixed data set of 780 adaptively chosen points was generated for 
metamodeling purposes. Thus the active learning loop is switched off. 

8.5.4.2 Experimental setup 

For the modeling the following model types are used: Artificial Neural Networks 
(ANN), rational functions, Kriging models [270], and RBF LS-SVMs [269]. The re
sult of a heterogeneous recombination will be an ensemble. So in total 5 model types 
will be competing to approximate the data. 

The ANN models are based on the Matlab Neural Network Toolbox and are trained 
with Levenberg Marquard backpropagation with Bayesian regularization (300 epochs)-
The topology and initial weights are determined by the Genetic Algorithm (GA). For 
the LS-SVMs the c and a are selected by the GA as are the correlation parameters 
for Kriging (with a linear regression and Gaussian correlation function). The rational 
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functions are based on a custom implementation, the free parameters being the orders 
of the two polynomials, the weights of each parameter, and which parameters occur in 
the denominator. 

The population size of each deme type is set to 15 and the GA is run for 50 gener
ations. The migration interval w,- is set to 5, the migration fraction nif to 0.1 and the 
migration direction is forward (copies of the nif best individuals from island i replace 
the worst individuals in island i+ 1). The fitness function is defined as the Bayesian Es
timation Error Quotient calculated on a 20% validation set where the minimal distance 
between validation points is maximized. 

8.5.4.3 Results 

For ease of visualization all outputs were modeled in pairs. Figure 8.17 shows the 
resulting search trace for three representative combinations (the others were omitted to 
to save space). 

Let us first regard the lift — drag trace. We notice a number of things. First all the 
models are roughly on the main x — y diagonal. This means that a model that performs 
Well on lift performs equally well on drag. This implies a very strong correlation be
tween the behavior of both outputs, which can actually be expected given the physical 
relationship between aerodynamic lift and drag. Only the rational models do not con
sistently follow this trend but this has probably more to do with their implementation 
as will be discussed later. Since all models are on the main diagonal the model type 
selection problem has become a single objective problem. It turns out that the ANN 
models (or actually an ensemble of ANN models if you look closely) are the best to 
use in this case, performing much better than the other model types. Kriging and SVM 
perform about the same with SVM doing slightly better. 

The situation in the second plot (lift — yaw) is different. There is a clear trade-off 
between both outputs. The ANN models still perform best on lift but the yaw out-
Put is fitted most accurately by rational models and their ensembles. The difference 
between SVM models and Kriging models is now more marked, with the SVM mod-
e l s performing much better on the yaw output. Remark also that the distribution of 
the rational models is much more spread-out and chaotic than that of the other model 
types (which are relatively clustered). This could actually be seen for all output com
binations. The reason is due to the way the order selection of the rational functions 
is implemented. The order selection contains too much randomness and not enough 
exploitalion of the search space, leading to erratic results. 

The pitch — roll plot has the same general structure, though the pitch output turns 
°ut much harder to approximate than lift. It is interesting to see though that ensembles 
turn out to be significantly superior to standalone models. It turns out that most of these 
ensembles turn out to be combinations of the best performing model types. 

The results presented so far are of course static results. In reality the best perforrn-
l n g model type changes as the evolution progresses. This can be seen from figure 8.18 
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Figure 8.17: Heterogeneous Pareto traces: lift — drag (left), lift —yaw (right), pitch — roll 
(bottom) 

which shows the relative share of each model type of the total population for two cases-
Model types that do well will have more offspring, thus increase their share. This 

dynamics is particularly interesting and useful in the context of active learning. It 
means the optimal model type changes with time, depending on how much informa
tion (data points) are available. This is exactly what one would expect (see [267] and 
references therein for details and examples in the single objective case). 

In sum the algorithm seems to have done quite well in detecting the correlations 
between the outputs, and the model selection results agree with what one would expect 
intuitively from knowledge about the structure of the responses. The obtained accura-
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Figure 8.18: Evolution of the population make-up lift —yaw (top) and pitch—yaw (bottom) 

cies are also similar to those obtained by single model type runs. It is interesting to see 
that, while the performance of Kriging and SVM was very similar (which is to be ex
pected given their connection to Gaussian Process (GP) theory), the SVM results were 
consistently better and more robust to changes in their hyperparameters. The exact 
reasons for this arc being investigated. It was also quite surprising to sec the ensem
ble models to so well. In virtually all experiments the final Pareto front consisted of 
only of ensembles. Depending on the model selection process they arc predominantly 
homogeneous (containing multiple models of the same type) or heterogeneous (thus 
'filling in ' gaps in the Pareto front). 

8.6 Summary and conclusion 

A crucial problem of generating global surrogate models for a particular application (or 
any function approximation task for that matter), is agreeing upfront with the domain 
expert what criteria the final surrogate should satisfy. The problem is that each criterion 
(encompassing an error function, generalization estimator, and target value) involves a 
tradeoff between intcrprctability, accuracy, bias, and computational efficiency. Thus, 
tor cases where this trade-off cannot be inferred from domain knowledge or application 
constraints a multiobjective approach to solving this problem should be considered. 
The advantage of a multiobjective approach is also that it allows multiple outputs to be 
modeled together, giving information about the tradeoff in the hyperparameter space, 
it further enables the generation of diverse ensembles and the application of an au
tomatic niodel type selection algorithm. This enables each output to be automatically 
modeled with the most suitable model type. There is also some empirical evidence that 
the number of local optima can be reduced by converting multi-modal single-objective 
Problems, into multiobjective ones [388]. If the same can be proven in machine lcaru-
mg it means the task of identifying good surrogate models can become easier through 
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a multiobjective approach. 
However, a disadvantage of the multiobjective approach is that as the number of di

mensions (criteria/outputs) increases the solution space increases exponentially [414]. 
Thus the search for the Pareto optimal set becomes harder, requires more search iter
ations, and the final set is more cumbersome for the practitioner to explore and un
derstand. For costly simulation codes the extra computational effort is negligible, and 
good GUI tools can help a domain expert understand the relationships present in the 
Pareto-optimal set. However, for cheaper codes a trade off between simulation cost 
and modeling cost will have to be made. The poor scalability of non-dominated sort
ing algorithms above 4 dimensions is also an issue [262]. Luckily, advances in algo
rithms [415,416], front vizualization [417], and gains in computational efficiency [418] 
continue to be made. 

A disadvantage of the multiobjective approach versus the milestone approach is 
that the direct multiobjective approach takes all criteria into account straight away-
This is not necessarily a problem but is not always the most computationally efficient. 
For example, in the case of adaptive sampling it makes no sense to check or enforce 
an (expensive) application specific constraint if only a few data points are available. 
The model first needs to mature by incorporating more data before undergoing more 
stringent checks. In this case the number of objectives varies dynamically and thus 
a scalarized multiobjective approach with a dynamically varying weighting parameter 
(as discussed in [419]) can be useful. Alternatively a cooling approach as done in [1 57] 
could be used. 

Thus, naturally much work remains. First of all, while support for multiple criteria 
is already very useful, more research is needed on intuitive criteria. Ideally criteria 
should be easily formulated in language that a domain expert is comfortable with and 
fully understands. Fuzzy theory can be helpful in this respect. Besides researching the 
feasibility of fuzzy criteria more work still needs to be done on classic model selection 
methods and explore the relationship with a constraint based approach. This to fully 
understand the relationship between error function and generalization estimator, and 
how they impact the final response. A way to vary the criteria dynamically with the 
sample selection loop would also be useful as is the study of transductive learning 
[420]. A possible integration with domain partitioning methods (e.g., as done in [198]) 
is also promising. 

Another area requiring further investigation is understanding how the iterative sam
ple selection process influences the hyperparameter optimization landscape. There is 
a mutual dependency between the model type, hyperparameter optimization strategy* 
and sampling strategy (e.g., see [142]). The exact nature of this dependency depends 
on the model type. Determining how they interact and may be optimally combined is 
a topic of ongoing research. For the tests in this chapter the authors have simply let the 
optimization continue from the previous generation. However, some initial tests have 
shown that an intelligent restart strategy can improve results. Knowledge of how the 
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number and distribution of data points affects the hyperparameter surface (determined 
by some metric) would allow for a better tracking of the optimum, reducing the com
putational cost. The influence of noise and discrete variables on the hyperparameter 
optimization (e.g., neural network topology selection) also remains an issue. 

In general, while some progress towards dynamic multiobjective optimization has 
been made [421,422] , this is a topic that current research in multiobjective surrogate 
modeling is only just coming to terms with [262]. Or as English pithily puts it: "Opti
mization is easy, learning is hard (in the typical function)." [423]. 
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Estimating Response Nonlinearity in 
Regression 

Entia non sunt multiplicandapraeter necessitatem. 

(Entities must not be multiplied beyond necessity) 

— William of Ockham 

9.1 Introduction 

A recurring theme in this dissertation has been that the primary users of global sur
rogate modeling methods arc domain experts, whose main concern is to obtain an 
accurate replacement metamodel for their problem as fast as possible and with mini
mal overhead. Thus if surrogate modeling methods arc to see widespread, industrial 
adoption by non-modeling specialists it is important for the model complexity selec
tion problem be tackled in an autonomous way. As discussed in chapters 3 and 8, this 
makes the choice of the model quality estimation metric crucial. 

A popular choice in this respect arc resampling strategics such a cross valida
tion [170J. While cross validation almost always performs very well [424] it is ex
pensive to use and is not always efficient at picvcnting unwanted ripples or bumps in 
the final model response. These lead the domain expert to mistrust or even reject the 
model and hamper its re-use in the engineering pipeline. This chapter presents a new 
measure, called Linear Reference Model or LRM, that helps reduce this problem. By 
resampling the model it provides a non-parametric estimate of the observable (as op-



www.manaraa.com

9-2 CHAPTER 9 

posed to structural) nonlinearity of model. When used alone or as an auxiliary penalty 
during the hyperparameter optimization process it can lead to more accurate and parsi
monious models over classic methods like cross validation. It is also computationally 
cheap to evaluate and is independent of the model type. 

9.2 Background and Motivation 

9.2.1 Background 

Many model selection criteria have been developed and discussed at length in the liter
ature: re-sampling methods (cross validation, bootstrap, leave-one-out, hold-out set, 
etc.) [170 ,424 ,425] , information theoretic methods (AIC, MDL, BIC, etc.) [171], 
and methods from statistical learning theory [178, 191,426] . Much work has also 
been done on hyperparameter optimization strategies for different model types, both 
in the single objective case [180, 182, 183, 191 ,345-347 ,351] and multi-objective 
case [394—397,427]. An excellent overview of this line of work is given by Jin et. 
al. in [388]. In the multi-objective case, typically an accuracy criterion (such as the 
validation error) is used together with some regularization parameter or model com
plexity measure (e.g., the number of support vectors in SVMs) in order to produce 
more parsimonious models [384]. Other criteria used include: sensitivity, specificity, 
interpretability, and number of input features [388, 395]. An alternative approach is to 
use model types and metrics fully rooted in Bayesian statistics, as is done in the work 
by Kenneth, and O'Hagan [125]. In this case the model generation procedure does not 
result in a single best model, but rather a distribution over all possible models obtained 
through Bayesian inference. 

In general, though, there is no universally optimal model selection procedure and 
much depends on the model type and on the amount and distribution of data points [9]-
Thus surrogate modeling researchers typically employ re-sampling methods such as 
(leave-one-out) cross validation [170] since they are generic, easy to apply, and gen
erally quite accurate [424]. It has been shown, though, that the generalization error 
obtained through re-sampling methods can be quite biased depending on the data dis
tribution and re-sampling strategy [9 ,425,428] . 

9.2.2 Structural versus Observable Complexity 

Chapter 5 described a benchmarking study that assessed how well different model 
types were able to approximate a parametrized RF circuit block under a fixed adaptive 
sampling strategy and increasing dimensionality. The study used an unbiased test set 
as model selection metric which, in a next step, needed to be replaced by some approx
imation (in any real problem such a test set is not available). However, tests showed 
that, while resampling methods could be used to estimate the model accuracy, they are 
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expensive and the final models sometimes show unwanted ripples or bumps in their 
response. 

An example of unwanted behavior is the ridge shown in figure 9.1. Naturally these 
artefacts become more problematic as the dimensionality and data sparsity increases. 

- 1 - 1 
x2 x1 

Figure 9.1: 2D slice of a 6D ANN model for a problem from electronics. The ridge at the top of 
the figure is an example of an undesirable artifact that we want to avoid. 

Another example is shown in figure 9.2a. The figure results from generating a Krig
ing model that minimizes the root mean square error on a 20% max-min validation set 
(the minimum distance between the validation points is maximal). The true function 
is shown in figure 9.2c. Figure 9.2a clearly shows large oscillations where the true 
behavior should be much flatter and smoother. Figure 9.2b shows the result if we min
imize the LRM metric proposed in this chapter. The full Pareto search trace showing 

Plol 01 iin using Kng ngModel P ol DI i n i.s ng Kn&ngMooei 

Wn L 6 n ' ' Wn L i - " 1 ' Wn 

(a) Minimum max-min validation (b) Minimum LRM score (c) True function 
error (20% of the training 

data) 

Figure 9.2: Surrogate models of the input noise current (\Jifn ) of a Low Noise Amplifier [20] 
generated with different model selection criteria. The dots represent the training data. 

the trade-off for a fixed data set is shown in figure 9.3a. 
Recall from chapter 8 that the Pareto front will change if sampling is enabled. 
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(a) Fixed data set (b) Sampling enabled 

Figure 9.3: Pareto search trace for the LNA problem 

This is shown in figure 9.3b1 . The figure clearly shows how the front advances and 
the model quality improves as more data becomes available. In addition the trade
off in the front seems to decrease as the number of points increase. This should be 
expected since as the amount of data increases there is less uncertainty about the correct 
hyperparameter values and the agreement between both measures increases. 

9.2.3 Computat ional cost 

A second disadvantage of re-sampling strategies is that they are computationally ex
pensive to evaluate, for some model types (e.g., large neural networks) the resulting 
modeling cost may even outweigh the simulation cost. On the other hand, they are 
attractive since they are very easy to implement, generally give good results, and do 
not depend on the model type. For example, this makes them useful when dealing with 
domain specific approximation techniques or when dealing with proprietary modeling 
code where the model implementation or structure is hidden. 

9.2.4 Motivation 

These findings drove us to search for a metric that (1) tackled the problem of unwanted 
oscillations or ridges in models directly, (2) was computationally cheap(er) to evaluate, 
and (3) was independent of the approximation method. The goal is not to replace 
existing criteria but rather to augment their performance where necessary. 

In effect, the surrogate model shown in figure 9.2a exhibits high behavioral com
plexity, i.e., the behavior that we can observe looks complicated. This complicated 

1A movie showing the evolution is available at h t t p : / / s u m o l a b . b l o g s p o t . com/ 
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behavior can be, but does not necessarily have to be, due to a high structural com
plexity of the model, i.e., the model formulation itself is complex. It is important to 
note that the implication is not absolute (e.g., the sine function). Naturally there is a 
certain correlation between the complexity of the response and the complexity of the 
representation (e.g., the number of model parameters) but it depends on the domain 
of interest and the model type (e.g., the correlation for polynomial functions is much 
stronger than for neural networks). 

In the Genetic Programming (GP) community these two types of complexity are 
known as phenotype complexity and genotype complexity [342, 429]. The major-
tty of work on model selection has concentrated on structural, genotype complexity. 
Many metrics have been designed that explicitly take into account the complexity of 
the inodel structure or formulation, penalizing models with a large number of pa
rameters or terms. Probably most well known are information theoretic measures 
like MDL, AIC, and its variants [171]. In GP many metrics have been defined that 
quantify the complexity of the tree or graph that represents a solution in the popu
lation [342,430,431] . These are then typically combined with some goodness of fit 
criteria in a single or multi-objective framework [429]. Remark, though, that intu
itive assumptions that the structural complexity should always be minimized and that a 
model with a large number of parameters relative to the available data is by definition 
undesirable do not always hold [432-434]. 

Much work has also been done in the statistical learning theory community on 
data and class dependent model complexity metrics. Data-dependent complexity mea
sures have been developed as an alternative to function-class-dependent complexity 
measures (such as the fat-shattering dimension). Examples include discrepancy-based 
measures, Rademacher complexity measures, and Gaussian complexity measures [435, 
436]. Usually these measures are vised to build bounds driving model selection, and 
may intervene as regularization terms in a structural risk minimization approach. An 
overview of these and other regularization related topics is given in [425,437]. 

Less work has been done on measuring the phenotype complexity directly. Work 
°n estimating function smoothness has been done in [438], based on techniques from 
stgnal analysis (i.e., looking at the frequency content of a function) [425]. Recently, 
L439] propose a new niodel selection metric based on the modulus of continuity of a 
tunction [440] and provide upper bounds for the modulus of continuity for different 
estimation functions. From GP, a new complexity metric is introduced in [342] that 
measures the order of non-linearity of a given GP tree. It is based on the degree of 
the best fitting polynomial of the symbolic equation represented by the tree. Thus it 
l s a kind of hybrid between genotype and phenotype complexity. However, due to 
numerical constraints the algorithm does not scale well beyond two dimensions and is 
thus applied on each sub-tree independently (univariate case only). 
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9.2.5 The L R M Assumption 

In global surrogate modeling the goal is to capture the true behavior of the simula
tion code as efficiently and accurately as possible. Any visible behavioral complexity 
(bumps, ripples, etc.) should be explainable by data points at (or in the vicinity of) 
those locations. Thus, intuitively, if there is no such evidence nearby, the bump should 
be regarded as an artifact of the model. We propose a new behavioral complexity 
metric that is based on the following core assumption: 

If nothing else is known, the model behavior between two neighboring 
points should be linear. 

We term this Linear Reference Model (LRM) based model selection. In a nutshell, 
the LRM metric penalizes a model proportional to how much it deviates from a linear 
fit. At first this assumption may seem misguided, a perfect linear fit is usually not 
desirable as a surrogate model since it is not continuous and needs far too much data 
to result in a usable approximation. However, typically it is very difficult for a non
linear surrogate model (Kriging, SVM, ANN, RBF model, etc.) to produce a linear 
interpolation. The final model will always be continuous (unless the fitting model itself 
contains discontinuities of course). Thus the LRM assumption should be interpreted 
as a kind of penalty or parsimony pressure [431] that will push the hyperparameter 
optimization into the direction of a linear fit but will typically not reach the goal itself-

The idea of calculating the deviation from a linear fit in order to identify nonlinear 
regions of the response is also briefly described in [158]. There it is used in a weighting 
scheme in order to perform efficient data reduction. Its formulation as a model or 
sample selection criterion is, unfortunately, not exploited. 

As a final note, it is important to remark that while the LRM assumption can be use
ful for global surrogate modeling it may be less useful for surrogate driven optimization 
since the LRM assumption can hamper the models ' prediction of new optima2 . In this 
case a link with the prediction uncertainty is desirable. 

9.3 L R M Metric for Response Nonlinearity Estimation 

We now introduce the LRM algorithm in detail. But first the authors stress that pri
ority should always be given to model specific complexity or regularization measures 
if available. For surrogate inodels where a model specific approach is infeasible or 
insufficient, the proposed measure can be used to improve results. 

2Replacing the linear interpolation by a quadratic one would work but this would require an extra data 
point (or domain knowledge) to figure out if the interpolation should 'point up ' or 'point down'. 
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9.3.1 Concept and illustration in ID 

To illustrate the L R M concept we take a simple predefined mathematical function with 
only one input parameter x and one output^: 

y = f(x)=ef 

with x 6 [ - 1 0 , 1 ] . A plot of this function can be see in figure 9.4a. 

(9.1) 
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(a) Mathematical function and approximation (b) Deviation of the approximation from a linear 
interpolation based on a number of test points 

(enlarged for clarity). 

Figure 9.4: Intuitive ID illustration of the LRM metric 

Consider a model approximating the function using 3 s a m p l e s ( a t x = — 1 0 , - 3 , and 1). 
Regarding the prediction in figure 9.4a, the niodel shows some unwanted oscillations at 
the left part of the function. The core assumption underlying LRM is then to penalize 
the inodel for that behavior. To determine how much the model should be penalized 
the linearity of the model can simply be quantified as the perpendicular distance be
tween the model and the linear interpolation3. To that end, the linear interpolation is 
evaluated at several test points for each set of sample points. The magnitude of the 
distances (denoted by the arrows in figure 9.4b) are then aggregated and returned as 
the final penalty for that model 4 . 

If the underlying simulator also produces derivative information together with sam
ple data (remember we do not want to run extra simulations just for model selection) 
this helps but does not void the need for a linear interpolation. One still needs to see 
w h a t happens in between points. In addition, if the surrogate model type supports the 
calculation of the prediction uncertainty this can also be used to help infer to what 
degree the oscillation is justified. 

Note that using a quadratic interpolation is not possible since it would require additional simulation 
Points or re-training the model 

Readers may note the link with sampling strategies, this point will be revisited in section 9.5. 
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9.3.2 Generalization to d dimensions 

Denote the set of samples used to construct the surrogate model f(x) as a matrix X, 

/ x\t\ ... x\,d \ 

X=(xu...,xk)
T=l : •. : (9.2) 

\ xkjx ... xk,d ) 

where each row is exactly one sample point. The core LRM assumption is that if 
nothing else is known we assume linear behavior in between two neighboring sample 
points (keeping in mind the caveats from section 9.2). The more a model deviates from 
this, the more it should be penalized. 

The first step is to construct a ^/-dimensional linear interpolation of X. This can 
be done by constructing a Delaunay triangulation [441] on the k samples used for 
constructing the surrogate model. A Delaunay triangulation is a triangulation such 
that no sample is inside the circum-hypersphere of any simplex. In addition it has the 
property that it is unique if no d+1 samples are on the same hyperplane and no d-\r 2 
samples are on the same hypersphere. 

Let si be a simplex (i = 1../ < k\ ? I) defined by samples Pi = (p\, ...,pd+\)T rn 
barycentric coordinates. The simplex S{, together with the corresponding output values 
of its corner points, is used to construct an unique interpolating hyperplane Hi with 
coefficients a,- = (a,-, , . . . ,aid+2). Of interest is then the function h(x) that represents 
the perpendicular distance between Ff and f: 

h(x)=d±(f(x),FIl(x)) (9.3) 

Note that we take the perpendicular distance and not the norm | \f(x) — FIi(x) | \2 since 
the norm penalizes the steep parts of the response too severely. A plot of h(x) for the 
1-dimensional example from the previous section is shown in figure 9.5. Ideally the 
area under h(x) for each simplex Sj should be minimized: 

rainf f .. f h(x)dx + ..+ f.. f h(x)dx) (9-4) 

Since this integral can typically not be calculated exactly (the analytical expression of 
a surrogate model is not always easy to obtain or integrate) an approximation would be 
needed: one of the many quadrature rules in low dimensions, or Monte Carlo/sparse 
grid based methods for higher dimensions. However, this quickly becomes compli
cated in higher dimensions, especially since we are dealing with simplices and not 
orthotopes. Thus we opt to minimize the mean of h(x) instead. This is much cheaper 
and has a similar effect. To estimate the mean we use a Monte Carlo approach and 
sample h(x) using a space filling (in the linear interpolation space) test point distri
bution. We are most interested in speed and capturing the largest oscillations of the 
function rather than capturing the small variations accurately. Let points b i , ...,bf/+2 
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0 15 

h(x) | 
mean 

Figure 9.5: A plot ofh(x) from equation (9.3) is shown for the 1 -dimensional example from 
figure 9.4a. 

be the test points selected for each simplex sl. The first point chosen is the geometric 
ccntroid. Using barycentric coordinates this can be calculated as 

• l = 
2s,= \ P / 

d+\ 
The remaining d + \ test points are chosen halfway on the simplex medians 

P ; + b l 
Dy-i-i = — o — ? y = t .cf-f-1 

(9.5) 

(9.6) 

^ graphical illustration of the resulting distribution in the 2D case is shown in figure 
"•6. Note that this procedure is different from what is typically done in lazy learn
ing [218—220]. In lazy learning test points are selected first after which the optimal 
neighborhood (and possibly local model type) is searched for in order to produce a 
prediction. FIcrc we do the reverse. Another difference is that we are not interested in 
the quality of the prediction of the local linear model itself. Rather we are interested in 
how much the global surrogate model deviates from it (versus work such as |442]). 

Subsequently, for each simplex s, the test points b , arc converted to Cartesian co
ordinates (J = l , . . . , J + 2) 

brPi (9.7) 

and placed into a matrix Q, together with the response value predicted at each c, : 

/ CM, i . . . ci j t / / ( c i ) 1 

Q, (9.8) 

\ cd\ 2,1 Cd\2d / ( c c / . 2 ) I 
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Figure 9.6: Test points in a 2D Delaunay triangulation 

This allows the calculation of the penalty score for this simplex Sj. This penalty score 
is the perpendicular distance between Hj(x) and q7 , where q7- is the j t h row of Qj. 

1 d+2 

score-, d + 2 \\*l\\2 
(9.9) 

Note other aggregation functions are possible over the simple average we employ here 
(e.g., the maximum). The scores score; for each simplex Si are then aggregated to 
obtain the overall LRM score. Again, we use the mean here, but other aggregations are 
possible. 

LRM(f(x)) = - ^score 
' i=\ 

(9.10) 

Finally, remark that under loose assumptions of continuity 

lim LRM(f(x)) = 0 ( 9 . 1 0 
|A"|—>oo 

Our experience is that approximation methods have most trouble with responses where 
the response behavior is heterogeneous (not uniformly nonlinear/ 'bumpy' and not uni
formly linear/smooth). It is in these cases that we expect LRM to be most useful. 

9.3.3 Computational Cost 
The dominating cost of the algorithm is performing the triangulation in order obtain 
an cZ-dimensional linear interpolation. Fortunately, this only has to be calculated when 
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the data distribution changes (once every sampling iteration5). Thus many surrogate 
models can be measured with no (significant) additional cost. In contrast, re-sampling 
methods need to be calculated for every model separately. 

The implementation used in this chapter is based on QHull [443]. QHull obtains 
the Delaunay triangulation for a set of points by constructing the convex hull in one 
dimension higher than the dimension of the points. This, by adding the length of each 
point as the last coordinate, effectively creating a paraboloid out of the points. After 
creating the convex hull the lower part of the hull is projected to the original space 
resulting in the Delaunay triangulation. 

According to the QHull documentation the average time complexity to construct 
a convex hull in d dimensions is 0(~-), where k is the number of points, v is the 
number of output vertices and /v is the maximum number of facets for a convex hull of 
v vertices. The latter, fv, is tightly bound to the dimension of the problem and grows 
rapidly as the number of dimensions increase. 

Before we discuss concrete running times, keep in mind that in our experience 
a very rough empirical limit to the application of generic (i.e., not domain specific) 
global surrogate modeling methods with sequential sampling is a few thousand points 
m 6 dimensions. Naturally this depends on the problem and method at hand. The fun
damental problem, though, is that as the dimensionality increases the increase in data 
points needed to maintain the same high modeling accuracy (typically two significant 
digits) becomes impractical. 

Figure 9.7: Time to complete a Delaunay triangulation using QHull (in seconds) 

Figure 9.7 shows how the running time of QHull scales with the number of data 

Constructing an accurate global model typically involves an ilciativc process of collecting data 
training models —^collecting more data—mpdating inodels —etc. Each time data is collected is referred 
as a sampling iteration. 
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points and number of dimensions. The tests were done on an Intel Quad core 2.6GHz 
machine with 4GB main memory. In the worst case (3000 points in 6 dimensions) 
the triangulation takes about 80 seconds which is still an acceptable cost to make once 
every sampling iteration. The plot also confirms that the dimensionality influences the 
running time the most. 

Thus, since this cost need only be made once every sampling iteration, it is negligi
ble for any but the high dimensional (>6D) applications of global surrogate modeling 
methods. For those cases switching to an iterative or approximate Delaunay imple
mentation will provide a faster solution. 

9.4 Applications 

We now discuss two applications to demonstrate the usefulness of the LRM idea: one 
from electronics and one from structural dynamics. These problems were chosen since 
they are both challenging real world approximation problems from engineering, yet 
data generation is still sufficiently cheap to allow multiple runs and the generation of 
dense test grids for model validation purposes. 

9.4.1 Low Noise Amplifier 

First we revisit the RF circuit block modeling problem tackled in chapter 5. There 
the goal was to accurately capture the non linear behavior of a Low Noise Amplifier 
(LNA) while minimizing the number of adaptively selected data points. The general 
conclusion of the study was that ANN models gave the most favorable accuracy vs. 
samples ratio but that they were computationally expensive to generate using standard, 
re-sampling based model selection criteria. With the development of LRM we re-did 
some of the experiments and these arc reported below. 

9.4.1.1 Background 

Recall from chapter 5 that obtaining the required circuit design parameters can be done 
through an approximation of the circuit performance figures based on one or more sur
rogate models. This is referred to as 'forward model ' of the circuit. A forward model 
can be either obtained via direct modeling of circuit performances (i.e., a one step ap
proach) or by using intermediate surrogate models of a convenient set of behavioral 
parameters (e.g. admittances and noise functions) and computing performances via 
analytical equations in a post-processing step (i.e., a two step approach). This is illus
trated in figure 9.8. 

Subsections 9.4.1.2 and 9.4.1.3 will test both approaches through the use of LRJVl-
The purpose of subsection 9.4.1.2 is to validate the use and implementation of the 
LRM metric on a representative case from the study in [20]. The purpose of subsection 
9.4.1.3 is to apply LRM to the new problem of modeling the performance parameters 
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Figure 9.8: Direct and indirect modeling of the LNA performance parameters 

directly and seeing if satisfactory accuracies can be reached (within the sample budget) 
as the dimensionality is increased. 

9.4.1.2 Modeling of the circuit parameters 

We first take the 4 D formulation of the LNA problem and attempt to reproduce the 

behavior of the input-noise current response variable \fif„ defined by the same set of 
approximate equations as used in chapter 5. 

Configuration The SUMO toolbox was configured with A N N models using a ge
netic algorithm to optimize the topology and the initial weights. The GA was run for 
10 generations between each sampling iteration with a population size of 10. The net-
Works were trained using Levenberg-Marquardt backpropagation in conjunction with 
Bayesian regularization [173,272] for 300 epochs. Thus, note that we already apply 
a model specific regularization algorithm to help keep the smoothness of the model 
(and its behavioral complexity) under control. A good overview of regularization ap
proaches in neural networks is given in [438]. 

The adaptive sampling algorithm used is LOLA-Voronoi [239] which determines 
the non-linear regions of the true response and samples those more densely. LOLA-
Voronoi depends only on the true data and not on the surrogate model. LOLA-Voronoi 
starts from a small optimized Latin hypercube design augmented with the corner points 
of the domain. Each sampling iteration LOLA-Voronoi selects 30 new points up to a 
total of 1500. A different run is done for each model selection metric used: in-sample 
error, max-min 2 0 % validation error, 5-fold cross validation, AIC, unbiased test set, 
and LRM. In addition each run was redone but this time with L R M as an auxiliary 
measure. In this case the average of both was taken. Each run was repeated 15 times 
to smooth out random effects. All tests were run on CalcUA, the cluster available at 
the University of Antwerp, which consists of 256 Sun Fire V20z nodes (dual A M D 
Opteron with 4 or 8 GB RAM), running SUSE linux, and Matlab 7.7 R2008b. 
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Results Figure 9.9 shows how the true error decreases under different model selec
tion criteria as more data points are added. The true error is calculated as the Root 
Relative Square Error (RRSE) on a test set of 11 4 points. 

The "true error" curve in figure 9.9 shows the error curve if the true error itself is 
used to drive the model generation. Intuitively this should be the best curve since it 
is the most accurate fitness function for the hyperparameter optimization. Note that in 
real situations the "true error" is unknown. 

- - Sample Error 
—B— SampleError + LRM 
—«— CrossValidation (5 folds) 
—e— CrossValidation + LRM 
—*— ValidationSet 
—^Val idat ionSet + LRM 
—i—AIC 

O LRM 
• Test set (true error) 

0 500 1000 1500 
Number of samples 

Figure 9.9: Ability of different model selection criteria to approximate the true error (LNA 
application) 

A number of interesting observations can be made from the figure. Firstly, figure 
9.9 shows using LRM alone is already a reasonable approximation for the true er
ror, even outperforming 5-fold cross validation. Surprisingly, using no generalization 
control (Sample Error curve) performs just as well (poorly) as using a 20% max-min 
validation set or AIC. This is most likely due to the Bayesian regularization already 
employed in the ANN implementation. Note also how the evolution of the error tends 
to be more erratic in those cases. 

While using LRM alone already gives reasonable results, the accuracy is improved 
further if it is used as an auxiliary measure. For example, when combined with the in-
sample error its performance is roughly on par with with minimizing true error directly-
The results are also comparable to those in [20]. Likewise, auxiliary use of LRM 
significantly improves the evolution of the validation set curve, but seems to have less 
impact on the cross validation curve. 

If we then look at the structural (genotype) complexity of the models generated un
der the different measures we see that the results are again quite good. While LRM only 
acts on the phenotype complexity, figure 9.10 shows that it also impacts the genotype 
complexity favorably. Performance of pure LRM is similar to using cross validation 

T— — r 
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Figure 9.10: Evolution of the model complexity (# weights) under different model selection 
criteria (LNA application) 

or the true error directly and results are further improved if it is used as an auxiliary 
measure. 

The final question is then how this affects the overall running time. This is shown 
in figure 9.11. For reference, note that the training of a single ANN model in this 
case takes between 2 and 45 seconds (depending on the complexity) with an average 
of about 20 seconds in this case. This time is due to the Matlab implementation (vs. 
native code) and the expensive Bayesian regularization employed6 . 

Again LRM performs competitively to using the true error directly and almost an 
order of magnitude faster than if cross validation were used. One may wonder about 
the strange SampleError curve. Since it is the fastest measure to evaluate one would 
not expect it to take the most time. The reason is that, while the measure itself is cheap, 
it leads to more complex models which, in turn, lead to longer training times. 

9.4.1.3 Direct modeling of the performance parameters 

The previous section was, like chapter 5, concerned with modeling the electrical be
havior (admittances, noise parameters) based on low level circuit parameters. These 
niodels can then be used to derive the performance characteristics of the LNA circuit 
in a post-processing step (figure 9.8). However, recent work [444] has shown that 
small errors present in the intermediate surrogate models are amplified through the 
post-processing equations and can thus render the final prediction of the performance 
parameters unstable and inaccurate. An alternative approach is to model the pcrfor-

6In gcneial, foi these tests the modeling cost is offset as soon as the simulation time exceeds roughly one 
mmutc. 
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Figure 9.11: Comparison of the running time under different model selection criteria (LNA 
application) 

mance parameters directly, without creating intermediate models of the electrical char
acteristics. Note that this is a completely different modeling problem with completely 
different response behaviors. 

Configuration The previous subsection validated the use of LRM with respect to 
other model selection criteria. In this section we will use it as an auxiliary metric 
together with the in-sample error since the previous section showed it to be a good 
compromise. As relevant input parameters we take the transistor width W, the transis
tor length L, the source inductance Ls, the load resistance RL, the voltage bias of the 
transistor VQS, and the resistance in series with the generator RS (the generator series 
resistance). As output parameter we take the second order nonlinearity IIP2. We vary 
the dimensionality from two to six and model IIP2 using the same setup as the previ
ous section (the sample limit was extended to 3000). A full comparison across different 
model selection criteria (as done in the previous section) is not done for cost l-easons-
Rather we are interested to see if the use of LRM can lead to satisfactory ANN mod
els within the sample budget and across the different dimensions. Reference test sets 
of size 5 1 2 , 1 5 3 , 1 1 4 , 7 5 , 5 6 are available for this purpose. Otherwise the configuration 
settings were the same as for the indirect modeling case. 

Results Figure 9.12 shows the curve for each number of inputs. The curves again 
depict how good the LRM-SampleError combination is at minimizing the error on 
the reference grid. Desirable features are a smooth, monotonic decrease of the error 
in function of the number of data points. The steeper the descent the better. Erratic 
jumps should be avoided but temporary increases in error are permitted. The error may 
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temporarily increase if adding new data points reveals new features in the data or a new 
interpretation. What was thought to be a good model may turn out to be less accurate 
given the new information. 
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Figure 9.12: Evolution of the true error 

Number of samples 

when using LRM and the in-sample error as the model 
selection criterion. 

Studying the different sub-plots in figure 9.12, the first thing we see is that, besides 
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IIP?) and Gama for 6 inputs, all models reached the predefined targets7 within the 
sample budget. A second observation is that the curves for 5D and 6D are rather 
erratic, much more so than the 2D-4D curves. This is confirmed by preliminary results 
on the other performance parameters [241]. The most likely reason for this lies in 
the fact that for more than 4 dimensions the number of LRM test points chosen per 
simplex is too small to allow for an accurate estimation of the magnitude h(x). Note 
that 3000 points in 6 dimensions is only 3-4 points per dimension. The average simplex 
volume grows exponentially with the number of dimensions while the number of test 
points only grows linearly. Thus these results seem to imply that a different test point 
distribution is needed in more than four dimensions in order to more accurately guide 
the hyperparameter optimization. This is an issue for further research. 

9.4.2 Truss 

The second application comes from a completely different, but highly relevant, scien
tific domain: structural dynamics. 

9.4.2.1 Background 

The problem originates from [379] and is the geometric design of a two-dimensional 
truss for maximum passive vibration isolation. The baseline regular structure is shown 
in figure 9.13. This truss is a two dimensional simplification of a type typical in satellite 
applications. The structure is constructed of 42 Euler-Bernoulli beams, with two finite 
elements per beam, and is subject to a unit force excitation at node 1 across a 100-
200Hz frequency range. The two leftmost nodes are encastre and all other nodes are 
free. The objective is to maximize the band-averaged vibration attenuation at the tip 
compared to the baseline structure. The geometry of the structure is varied by allowing 
nodes 1-20 to move inside 0.9 x 0.9 squares (as shown in figure 9.13). We consider 
a four variable problem with the x- and y-coordinates of node nine and ten as the 
variables and the other nodes fixed as per the regular structure. 

9.4.2.2 Configuration 

The same configuration was used for the truss application as for the LNA problem-
Since the finite element analysis of this simple structure is very quick we were able to 
compute a 124 reference grid that is used to estimate the true error. We again use ANN 
models for this problem since initial tests showed they needed less points than other 
methods (SVM, Kriging, RBF) to achieve the same accuracy. Since they are also prone 
to overfitting and expensive to use they are a good example of where LRM is useful. 

7Notc that in general no reference grid is available. In that case whether a model is satisfactory or not 
will depend on (1) the engineer who visually explores the model, (2) the performance of the larger system 
where the global surrogate model is plugged into, and (3) a small number of extra test points. 
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Figure 9.13: A regular truss geometry, showing node numbers, encastre points, the forcing 
point, and the two nodes to be isolated from vibration (adapted from [379]). 

9.4.2.3 Discussion 

Figure 9.14 shows how accurate each model selection metric is at approximating the 
true error. The results are closer together than for the LNA problem, though again 
we see that the LRM-SampleError combination performs very well, even slightly bet
ter than using the test set directly. The evolution of the cross validation, LRM, and 
validation set curves are essentially the same. Zooming in shows 5-fold cross valida
tion performing slightly better than LRM-cross validation, followed by pure LRM, and 
then by the max-min 2 0 % validation set curve. In this case using LRM as an auxil
iary measure has little effect on cross validation and validation set. There is however a 
dramatic improvement when using it together with the in-sample error. Note the very 
Poor performance of AIC. For this problem it punishes the complexity of the network 
too severely in order to be of any use. 
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Figure 9.14: Ability of different model selection criteria to approximate the true error (Truss 
application) 
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Figure 9.15 shows how the different metrics impact the network complexity. Un
surprisingly, the use of the in-sample error alone again leads to the most complex 
networks. Adding LRM to the in-sample error significantly reduces the model com
plexity but it is still higher than using cross validation or the test set alone. On the 
other hand, using LRM alone results in the most parsimonious models (disregarding 
the AIC curve). More so than in the LNA example. LRM is a bit more conservative 
than cross validation when it comes to network complexity. This also seems to explain 
the small difference in accuracy between the two (figure 9.14). The tempering effect 
on the validation set curve can also be seen. 
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—v— LRM + Validation set 
—*—Validation set 
—)—AIC 
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Figure 9.15: Evolution of the model complexity (# weights) under different model selection 
criteria (Truss application) 

Finally the evolution of the running time across different metrics is shown in figure 
9.16. The results are in line with those from the LNA problem. Using LRM alone 
is just as fast as using a separate test set, just over 4 times faster than 5-fold cross 
validation, and the parsimony pressure it applies makes using it much faster than using 
the in-sample error alone. 

9.4.2.4 Summary 

The motivation for LRM stemmed from the need for a faster replacement for cross 
validation that was just as generic and easy to apply, and was better at keeping the 
behavioral complexity of the model under control. Given the two applications, we 
see that LRM seems to have been able to achieve this, at least for the ANN models 
employed here. The accuracy curve is comparable or better than that of 5-fold cross 
validation with a lower model complexity and computational cost. It is also clear, 
as others have noted as well [439,445], that AIC should not be used for A N N models. 
Rather a more model specific metric like the Network Information Criteria (NIC) [445] 
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Figure 9.16: Comparison of the running time under different model selection criteria (Truss 
application) 

should be used instead. This however requires changing the model implementation, 
something which we wanted to avoid. 

9.5 Conclusion and Future Work 

In this chapter we have discussed the motivation, algorithm, and application of a new 
model selection criterion (LRM) for estimating the response nonlinearity that can be 
useful in itself or combined with existing model selection criteria as a penalty. LRM 
was designed to directly combat the unwanted oscillations that can occur in fitted 
responses and serve (alone or combined) as a cheaper alternative to traditional re
sampling methods. Also useful is that its calculation does not require extra training 
or validation points and that an LRM value can be directly compared across different 
model types. This makes it possible to seamlessly apply it in hybrid methods such 
as [446]. However, again we stress that LRM should never replace existing (model 
specific) complexity control or regularization criteria. These should always be applied 
first. Rather, LRM should be applied (alone or as a penalty) where these are unavailable 
or insufficient. 

Naturally more research is needed to investigate how much other model types ben
efit from LRM. Initial tests with RBF SVM models show similar improvements in ac
curacy and also show the stabilizing effect of LRM as a penalty with existing methods. 
Work is also underway on an iterative implementation and improved test point distri
bution scheme in order to improve scalability in more than six dimensions (driven by 
preliminary scalability tests in [241]). This would allow application to larger data sets 
or codes. How the LRM metric can be successfully applied in the complex domain (to 
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allow its use for certain electro-magnetic problems) is also an open issue. 
It turns out the LRM metric can also be reformulated as a sample selection criterion 

with some attractive properties. If a model shows a peak or oscillation in a particular 
area of the domain, the domain expert needs certainty that the peak/oscillation is actu
ally there and not just an artifact of the model. This can only be guaranteed by sampling 
the peak/oscillations and verifying whether the model predicts the correct behavior. If 
this is not done the domain expert will tend to mistrust the model. The same is true for 
the different optima. The top of each optimum should be sampled to ensure that the 
height (or depth) of the peak is indeed correct. If LRM is used as a sampling criterion 
this is exactly what happens. This is a topic of ongoing work. 

Various extensions to the basic LRM idea are also possible. For example one could 
also include the volume of the simplex in the LRM equation and thus give more (or 
less) weight to certain areas of the model. The same applies to the prediction uncer
tainty. Also, depending on available domain knowledge, the reference model need not 
necessarily be a linear one. Extension to other reference models leads to algorithms 
not unlike the various space mapping methods from the electronics community [74J-
Extension of the LRM idea to these methods has the potential of further gains in accu
racy. 
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Applications 

A simulation saved is a simulation earned 

— Anonymous 

10.1 Introduction 

In this last chapter we present a list of problems that were tackled throughout the 
work conducted for this dissertation. These problems add to the already diverse set of 
applications discussed in the previous chapters and come from such diverse domains 
such as hydrology and aerodynamics. In some cases more information and/or movies 
of the modeling process can be found on the SUMO Lab blog ( h t t p : / / s u m o l a b . 
b l o g s p o t . c o m ) and YouTubc channel ( h t t p : / / w w w . y o u t u b e . c o m / u s e r / 
sumo l a b ) . 

10.2 Shekel function 

10.2.1 Description 

The first example is a synthetic problem where the objective is to model a predefined, 
4-dimensional mathematical function. The function in question is the Shekel 5 func
tion [447], a popular function for testing global optimization algorithms. This function 
was chosen since previous modeling results arc available for comparison. In [16] the 

http://blogspot.com
http://www.youtube.com/user/
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authors compare Second Order Regression, Kriging Models, and the Datascape model
ing software1 on three problems: Earth-Mars transit orbit design, the Shekel function, 
and Satellite constellation design. Only the Shekel function is used here since we did 
not have access to the code for the other problems. 

The function definition for 4 variables is given by equation 10.1. 

/(*) = X 
where 

1 
ffi {•x-Ai)(x-Ai)

T + Ci 

(10.1) 

4 4 4 4 
1 1 1 1 
8 8 8 8 
6 6 6 6 
3 7 3 7 

c = [ 0.1 0.2 0.2 0.4 0.4 ] T 

and (10.2) 

10.2.2 Experimental setup 
The Shekel function was modeled once with adaptive sampling switched on (with a 
maximum of 1000 samples), and once with it switched off. In the latter case the prob
lem was modeled multiple times for different fixed Latin Hypercube designs (in ac
cordance with [16]): 25, 50, 100, 250, 500, 1000, 2500, 5000, and 10000 samples 
respectively. In the former case an initial optimized Latin hypercube design of size 
20 is used augmented with the corner points. Modeling is allowed to commence once 
at least 90% of the initial samples are available. Each iteration a maximum of 10 
new samples are selected using the LOLA-Voronoi adaptive sampling algorithm. As 
in [16], a Latin Hypercube design of size 20000 is available for validation. 

The SE is modeled once with adaptive sample selection and the automatic model 
type selection algorithm, and once without sampling (for different fixed experimental 
designs) using feed-forward ANNs. ANNs were used for the second test since they 
scale well with the large number of data points needed. 

For the first test the model types included are: RJ3F models, ANNs, Kriging, Ra~ 
tional models, and LS-SVMs. In accordance with [16] the following error functions 
are used: 

R-Squared (R2): 

R2(y,y) = l -
HU(yi-y)2 = i 

MSE 
Variance 

(10.3) 

1 Datascape models have been used on development and operations of the F-16, which saved an estimated 
$36 million [16]. 
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Average Absolute Error (AAE): 

y « iv . _ y.l 
AAE(y,f) = 2«=1»t }!{ (10.4) 

Maximum Absolute Error (MAE): 

AfAE(y.y) = max(|y,- -}~/|) for i = 1,..,« (10.5) 

where y,y are the true and predicted response values respectively. The R2 value on 
the validation set is used to drive the hyperparameter optimization. 

The SUMO Toolbox was set to terminate if the number of samples exceeds 1000 
(sampling enabled) or a maximum of 5 hyperparameter optimization iterations is reached 
(sampling disabled). 

10.2.3 Results 

Figure 10.1 shows the results from [16] together with those from the SUMO Toolbox, 
h is immediately clear that the performance of the latter is very good. In the adaptive 
modeling case (ANN models) the error decrease in function of the number of samples 
is larger than for the other techniques. For example, to reach a maximum absolute error 
°f 2, Datascape needs 5000 samples, while the ANN models generated by the SUMO 
Toolbox need only 1000. 

The difference is even more marked if we consider adaptive sampling. Here RBF 
models were selected as the best fitting type. If samples are selected iteratively and 
models are updated sequentially, only 275 samples are needed to obtain a MAE of 2. 
After 1000 adaptively selected data points (roughly 5.6 per dimension) the final RBF 
model has a MAE of 0.13 (1% relative) and a AAE of 0.0024 (< 1% relative). Which 
I s still less than the other model types reach after 10000 data points. In addition, in the 
case of 10000 samples, the average time to build one Datascape model is 2 hours, vs. 
30 minutes for RBF models2, and 1-2 minutes for ANN models. The final RBF model 
after 1000 samples is shown in figure 10.2. 

Remark that these results should not be taken as a formal full fledged comparison 
smce not enough information is available about the other methods. The methodology 
used in Datascape is proprietary, thus we cannot comment on reasons for difference 
ln- accuracy. All that is mentioned is that Datascape uses features from fuzzy logic, 
non-linear regression and numerical optimization and presents them in a hybrid format 
116]. In the SUMO case results were obtained with out-of-the-box default settings. No 
Problem specific customization or user interaction was performed, this will of course 
only further improve the accuracy. 

"Due to the large number of data points the RBF models were fit with an iterative Alternating Projections 
Method. 
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Figure 10.1: Evolution of the errors for different methods when modeling the Shekel function 
(R2: left, AAE: right, MAE: bottom). 
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Figure 10.2: Final RBF model after 1000 samples (SE, x^ shown at the minimum (red), 
maximum (green), and middle value (blue)). 

10.3 Catchment parameter modeling 

10.3.1 Background 

We now take a modeling problem from hydrology. A task which is often central to 

hydrological modeling is the identification of suitable parameters for a given set of 
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modeling objectives, catchment characteristics and data. However, this identification 
process is difficult because conceptual rainfall runoff models generally have a large 
number of parameters and the accuracy of their calculations depends on how the rel
evant parameters are defined. Additionally, because of their conceptual nature, these 
Parameters cannot be measured directly and are therefore estimated on the basis of a 
calibration process, i.e., minimizing an objective function. 

We illustrate the strength of global surrogate modeling in improving the process 
°f estimating the right parameters of a rainfall runoff model. The SWAT (Soil Wa
ter Assessment Tool) is an operational model that was developed to assist water re
source managers in assessing water supplies and non-point source pollution at river 
basin scale. The model is able to assess the impact of changes in climate, landuse 
and management, and to simulate the transport and fate of chemicals and water quality 
loadings. The model is designed so that use can be made of readily available inputs. 
Upland components include hydrology, weather, erosion/sedimentation, soil temper
ature, plant growth, nutrients, pesticides, and land and water management. Stream 
processes include channel flood routing, channel sediment routing, nutrient and pesti
cide routing and transformation. The ponds and reservoirs component contains water 
balance, routing, sediment settling, and simplified nutrient and pesticide transforma
tion routines. Water diversions into, out of, or within the basin can be simulated to 
represent irrigation and other withdrawals from the system. However, one should be 
aware that every process in the model is a simplification of reality. 

In SWAT, a watershed is divided into multiple subwatersheds, which are then fur-
ner subdivided into hydrologic response units (HRUs) that consist of homogeneous 

tanduse, management, and soil characteristics. The HRUs represent percentages of the 
subwatershed area and are not identified spatially. The model operates in a continuous 
mode and has been widely used to estimate catchment runoff, nutrient and sediment 
toads. The SWAT model development, operation, limitations, and assumptions are ex
tensively discussed by [448]. One of the practical problems in applying the SWAT is 
determining proper values for the more than 30 parameters that control the fidelity of 

s Prediction. While many parameters can be estimated empirically a direct expen
sive optimization procedure is still routinely used to determine optimal settings [449], 
requiring many expensive simulations. 

Through the use of sequential modeling and active learning methods, a replace
ment metamodel can be generated that captures the relationship between the different 

WAT parameters and provides insight in their influence on the prediction quality of 
he SWAT. While at the same time minimizing the number of computationally expen-
l v e simulations. Optimization can still be performed as a post-processing step. 
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10.3.2 Related work 
A few studies have been reported in recent years in the field of water resources re
lated to surrogate modeling. Savic et al. [450] applied 2 data-driven models (genetic 
programming and ANN) to flow prediction, results show that both are able to match 
up against conceptual models. Khu et al. (2003) [451] reduced the number of simu
lation runs required by Monte Carlo (MC). This was achieved by using an ANN and 
hybrid GA to respectively approximate and explore the shape of the objective function. 
This significantly reduces the computational effort involved in investigating hydrolog
ical model parameter uncertainty. Later on, an evolutionary-based metamodel calibra
tion methodology was developed using a coupled genetic algorithm-RBF ANN [452]. 
Regis and Shoemaker (2004) [354] proposed an approach for costly black-box op
timization that uses space-filling experimental designs and k-nearest neighbor local 
function approximations to improve the performance of an EA in twelve-dimensional 
groundwater bioremediation problem. Broad et al., (2006) [453] evaluated six local 
search algorithms for purpose of improving the performance of ANN surrogate model-
based optimization of water distribution systems. The results show a significant im
provement in the value of the objective function by using a local search as a comple
mentary stage of surrogate model-based optimization of water distribution systems. 
Kamali et al. (2007) [454] evaluate the performance of the design and analysis of com
puter experiments (DACE) surrogate function along with Latin Hypercube Sampling 
(LHS) and MC Sampling for hydrological model calibration. The results indicate that 
DACE along with LHS reduced the computational cost of the calibration process. Re
cent research by Garote et al. [455] advocate the use of Bayesian networks to learn the 
behavior of a rainfall runoff model. 

10.3.3 Experimental setup 

10.3.3.1 SWAT 

The SWAT requires spatial information about topography, river/stream reaches, lan-
duse, soil and climate to accurately simulate the streamflow. The study basin is that 
of the Grote Nete (383 km2), located in the north-eastern part of Belgium. A detailed 
description of the study basin is given in [456]. Daily observations of precipitation, 
air temperature, evaporation, and daily streamflow data were obtained from the Royal 
Meteorological Institute and the Flemish Administration for Land and Water, Belgium-
The soil map was available at a scale of 1:25.000; the soil physical data was derived 
from the Aardewerk-SIBIS Soil Information System and land use was derived from the 
multi-temporal LANDSAT 5 TM image of 18 July 1997. 

The climatic inputs in SWAT include daily precipitation measured in 5 stations 
scattered in and outside the study area, and the potential evapotranspiration and min/-
max temperature collected in a station at the northern boundary of the catchment. De
tails of input data are given in [456]. The catchment was subdivided in 8 subcatchments 
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and 65 HRUs. The flow separation program of [457] was used in this research as to de
termine the relative contribution of surface runoff and groundwater to total streamflow. 
• he latter were created based on the various combinations of land use and soil types 

present in the catchment. Climate data were assigned to each HRU using the centroid 
method. The daily streamflows in the Varendonk outlet station were used for model 
calibration and verification. 

Parameter sensitivity analysis was applied to identify the parameters of the SWAT 
model that contribute most to the variability of component flows. It is important to have 
an understanding of catchment characteristics and the hydrological processes involved 
before 'blindly' applying surrogate modeling to the available data. Based on a criti
cal analysis of the SWAT modules to the hydrology of the study area, the parameters 
to calibrate were reduced to 18. Although this number of parameters is considerably 
smaller, to further reduce the number of parameters in the surrogate process, a sensitiv-
ny analysis was conducted to determine the most sensitive parameters of the hydrolog
ical module simulating streamflow. This analysis (through Latin Hypercube and One-
tactor-at-a-time) yielded the 4 most sensitive parameters. 

The first parameter is p, the percentage by which CN2 (the Soil Conservation Ser
vice (SCS) curve number) is changed from the initial values. Thus, p, a parameter in 
he approximation model, is converted to CN2, the actual parameter of the SWAT, using 

the following formula: CN2 = initialCN2 + """f^2^. Secondly, RCHRG_DP stands 
°r the deep aquifer percolation ratio and is a measure for the transfer between the shal

low and deep aquifer system. Thirdly, REVAPMN is the amount of water (mm) that 
nust be present in the shallow aquifer store before water can move to the unsaturated 
one. Finally, ESCO is the soil evaporation compensation coefficient. The domains 

of the 4 parameters are [-40,40] (ensuring absolute bounds of [35 90] for CN2), [0 3], 
1 1] and [0 1] respectively. When the SWAT model is run it generates a time series 

predicted flow during the period 1998-2002. This time series is then separated into 
components useful for runoff prediction: low flow (values < 2 ) , high flow (values 

— 5)> and total flow (all values). On each of these components the Mean Square Er-
°r (MSE) is then calculated with the true observations during that period, and that is 
te final output of the simulation code. Separating the total flow in more fine-grained 

components allows the SWAT to be calibrated for different types of flows. Thus, in 
stun, the SWAT simulator has 4 inputs (CN2, RCHRGDP, REVAPMN, ESCO), and 3 
°^Vnts(MSEh)W,MSEhigh,MSElolal). 

1 0-3.3.2 S U M O Toolbox 
Tl l e active learning settings were set as follows: an initial optimized Latin hypercube 

S1gn of size 50 is used augmented with the corner points. Modeling is allowed to 
mmence once at least 20 of the initial samples are available. Each iteration a maxi-
um of 50 new samples (over all outputs) are selected using the LOLA-Voronoi adap-

t l V e sampling algorithm [239] up to a maximum of 500. 
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There are many surrogate modeling methods available to fit the data and many op
tions implemented in the SUMO Toolbox. However, from the application it is not im
mediately clear which surrogate model type or hyperparameter optimization algorithm 
should be used (ANN, SVM, RBF models, ...). For this reason we shall use the auto
matic surrogate model type selection algorithm from chapter 7. The surrogate model 
types included in the evolution are: single layer feed forward ANNs (using [413]), 
Kriging models (using [270]), rational functions and LS-SVMs (using [269]). To
gether with hybrid models (ensembles, that arise as a result of a crossover between two 
models of different type) this means that 5 model types will compete to fit the data. 
The population size for each model type is 10 and the maximum number of genera
tions between each sampling iteration is 15. The final population of the previous model 
type selection run is used as the initial population for the next run. An extinction pre
vention algorithm is used to ensure no model type goes completely extinct. Given the 
correlation between the outputs, they are not modeled separately (by separate models) 
but together in a single model with multiple outputs. 

Note that this approach relieves the domain expert from technical choices related to 
the model generation. Besides a few high level options (which model types are of in
terest) and termination criteria (time limit, sample budget) no further input is required. 
The hyperparameter optimization, model selection, and sample selection are performed 
fully automatically, allowing the domain expert to concentrate on the application and 
not have to deal with modeling technicalities. 

In order to drive the hyperparameter optimization a max-min validation set of 20% 
is used. Since not all data points are available at once but are chosen incrementally, 
the validation set grows as more data arrives. Validation points are not selected ran
domly but by maximizing the minimum distance between them, thus ensuring a good 
coverage of the domain. Note, though, that models are always trained on all the data, 
it is only when the error is calculated that they are temporarily re-trained on 80% of 
the available data. The error function that is minimized is the Average Relative Error 
(ARE): ARE (y,y) = i X/'=i i~| , where y, y are the true and predicted response val
ues respectively. Since we are dealing with multiple outputs per model, a weighted 
sum over the ARE values for each output is taken. Since we wish to treat all outputs 
equally, all weights were set to l 3 . 

The SUMO Toolbox was configured to use the remote Sun Grid Engine (SGE) 
sample evaluation backend (see section 6.4). This means that the toolbox will run sim
ulations in parallel by transparently submitting them to a remote cluster. The cluster in 
question is the CalcUA cluster which consists of 256 nodes. Thus the SUMO Toolbox 
is running on a local machine, while the SWAT simulations are scheduled on the clus
ter. The number of data points selected each iteration is chosen dynamically (but never 
exceeding the user defined limit of 50) based on the average time needed for modeling, 
the average duration of a single simulation, and the number of compute nodes available 

3 Alternatively, a multi-objective approach as discussed in chapter 8 could also have been used. 
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figure 10.3: Evolution of the population composition during the modeling of the catchment 
parameters. 

at that point in time. The average time for one simulation is quite short, 4-10 minutes 
depending on cluster availability. 

10.3.4 Results 

figure 10.3 shows the evolution of the population as the modeling progresses. Some 
interesting dynamics can be observed. As soon as migration between the different sub 
Populations is allowed to take place, Kriging models quickly take over the popula
tion resulting in very smooth approximation surfaces. As the number of data points 
mcreases, the quality of the rational functions increases and they overtake Kriging as 
me most popular model type. However, the problem with the rational functions is that 
they are very prone to producing asymptotes in their response due to the increasing ex
istence of poles. The implementation in the toolbox is best suited to low dimensional 
cases with sufficient data per dimension, in other cases the orders of the polynomi-
a ls involved grow too quickly, increasing the risk of overfitting. Therefore, it is no 
surprise that they arc finally overtaken by ANN inodels that, thanks to the pruning 
tunctions implemented as part of the mutation and crossover operators, are able to 
Produce smoother responses. 

Of course nothing prevents this process from recurring. The fact that the optimal 
solution changes with time is not necessarily a bad thing and should actually be ex
pected since the hyperparameter optimization landscape is dynamic (due to the active 
teaming). Note that it is the extinction prevention algorithm that makes these oscilla-
*ons possible (it ensures a model type never goes completely extinct but that at least 2 

nidividuals of each type are preserved). Without extinction prevention these dynamics 
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are impossible and everything depends on the initial conditions. As a result the danger 
of converging to a poor local optimum (poorly fitted regression model) is significantly 
larger. 

1*1 Output Training error 

{ARE) 

Validation error 

(ARE) 

Cross 

validation 
minimum x 

MSE,B 0.083 0.108 0.104 (-39.99, 0.69, 0.99, 0.65) 
500 MSEhlgh 0.025 0.036 0.028 (-37.04,0.00,0.00, 1.00) 

MSE/o/aJ 0.023 0.038 0.028 (-39.62, 0.30, 0.99, 0.67) 

Table 10.1: Errors of final ANN model (4-14-3 network) 

ESCO=0 ESCO=0.5 ESCO=1 

RCHRG DP 

Figure 10.4: Final ANN model for MSEtotai, plotted at the minimum, maximum, and middle 
values of REVAPMN. The fact that the three slices coincide indicates REVAPMN has ex 

negligible impact on the overall response. 

Table 10.1 shows the final average relative errors (ARE) for each of the outputs 
on the training and validation data. In addition a 10-fold cross validation error was 
calculated as well. \X\ is the number of samples used to train the ANN model while x* 
and f(x¥) denote the minimum and corresponding function value of the ANN model 
respectively. For the MSE/,,^ and MSEtotai an error of less than 5% (acceptable for 
the application) is easily reached. The MSE[ow output appears more difficult, reaching 
only a final ARE of 10%. Thus future runs should take this into account, placing more 
emphasis on the first output instead of treating all outputs equally. On the other hand, 
this can also be an indication that the hydrologic model parameters selected are not 
good enough to capture the trend to simulate base flow. Therefore incorporating more 
parameters like available water capacity of soils (SOLAWC) will improve not only 
low flow simulated values but also high flow simulated values. This is the topic of a 
follow-up publication. 
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Figure 10.4 shows the plot of the final best model (a 4 - 14 - 3 ANN) for MSEl0tai. 
In the figure REVAPMN and ESCO have been clamped at 3 values: 0, 1 and 3 for 
REVAPMN sm&O, 0.5 and 1 for ESCO. The remaining 2 parameters,/? and RCHRG__DP, 
are shown along the x-axis and y-axis respectively. 

From the figure it is immediately clear that the 3rd and 4th parameters have virtu
ally no influence on the quality of the SWAT prediction: the three slices of each subplot 
coincide and the three subplots for each output show little or no differences. This was 
confirmed by using the model browser of the SUMO Toolbox to browse through each 
of the 4 dimensions. This is an unexpected result, a further study of the study basin 
and HRU settings is underway to shed more light on this issue. Though, a preliminary 
explanation can be given as follows. The 3rd variable, REVAPMN, affects when and 
to what degree subsurface flow occurs, and therefore indirectly govern the contribution 
of subsurface flow to the total stream flow of the watershed of interest. These two pa
rameters (ESCO and REVAPMN) have more influence in evapotranspiration simulated 
bY the model. Since we just analyze flow simulated by the model, these values cause 
a non-noticeable change in the water yield calculations, and therefore adjustments to 
these values can be left out. 

Interesting is also the break point RCHRGJDP = 0, below which the quality of 
the SWAT prediction markedly improves, reaching a minimum of 0.8 (MSE/ow), 16 
(MSEhigh\ and 10 (MSEiola/) respectively. The models also clearly show that the 
SWAT has more trouble predicting high flows than low flows (as can be seen from 
the higher MSE,olal value). Peak flow predictions were generally appreciable for low 
events and poor for higher flow rates because SWAT uses a modified formulation of 
the Soil Conservation Service (SCS) curve number (CN) technique [458] to calculate 
surface runoff. This result is consistent with earlier findings that the SWAT tends to 
overestimate peak flows [459]. In sum, the model captures the relationships between 
the different parameters in a smooth and intuitive manner. 

10.3.5 Conclusion 

In this section the computationally expensive problem of parameter setting in rainfall 
runoff modeling was investigated (calibrating the SWAT). The final surrogate model 
Produced by the SUMO Toolbox provided insight into the relationship between the 
different parameters (including identification of the optima) and can be used to improve 
the prediction quality in other settings (e.g., as part of a wider Geographic Information 
System (GIS) tool). 
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10.4 Methane-Air Combustion modeling 

10.4.1 Background 

This example and its description is taken from [389], where the authors describe the 
generation of an optimal ANN using a pattern search algorithm. 

The chemical process under consideration describes methane/air combustion. The 
GRI 2.11 chemical mechanism containing 277 elementary chemical reactions among 
49 species is used. The steady laminar flamelet equations [460] are often employed 
to describe the reaction-diffusion balance in non-premixed flames. The solutions to 
these equations provide temperature and mass fractions of all species in terms of two 
parameters. The mixture fraction z and the reaction progress variable c are used for this 
parametrization. Temperature and the chemical source term of c, which can be viewed 
as a measure of heat release, are shown as functions of these parameters in figure 10.5. 
The solid lines represent the system boundary and flame states outside this boundary 
are inaccessible. It can be seen that the chemical source term is very localized around 
z s « 0 . 2 and 0.15 < c < 0.23. 

0 25 

0 2 

() 15 
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Figure 10.5: Solution (from [389]) of the steady laminar flamelet equations as a function of 
mixture fraction z and progress variable c; (a) temperature (K) and (b) chemical source 

term (kg/ (m3 s)) 

For the approximation 1000 data samples are available, half of which will be used 
for training, the other half for validation (in accordance with [389]). Sample data 
were obtained by applying an acceptation-rejection method [461]. This method con
sequently results in a better resolution of the important regions with high chemical 
source term and temperature. In addition to the training and validation sets, a separate 
dense data set of 13959 samples is available for validation purposes. This data set it 
is not used in any way during the modeling but as a simple post-processing step to 
objectively show the accuracy. 
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10.4.2 Experimental setup 

ince a fixed dataset is available, the adaptive sampling loop was switched off. Only 
oaptive modeling was performed. Again, it is not immediately clear which surrogate 

model type should be used. For this reason we use the automatic surrogate model 
ype selection algorithm based on heterogeneous evolution. The surrogate model types 

included in the evolution are: feed forward ANNs, smoothing splines, RBF models, 
Rational functions and LS-SVMs (using [269]). Together with the hybrid models (en
sembles) this means that 6 model types will compete to fit the data. The population 
rze for each model type is 10, as is the maximum number of generations between each 

sampling iteration. 
The validation set of 500 points is used to drive the model parameter optimization 

(as done in [389]) using error function (7.5). The SUMO Toolbox is set to terminate 
atter timeout of 360 minutes or an accuracy of 0.01 is reached. Only the temperature 
output is considered here since it is the most interesting. In addition, the temperature 

ata is normalized to [0,1] and the input space is normalized to the interval [—1,1]. 

10.4.3 Results 

t^ach experiment was repeated 14 times. The composition of the final population for 
each of the 14 runs is shown in figure 10.6a. 

From the figure it is clear that ANNs perform the best in all cases and that the results 
l e consistent (the average and standard deviation are shown at the top of figure 10.6a, 

e leftmost value corresponding to the top legend entry). The first run of figure 10.6a 
interesting given the large number of ensembles. In that particular case the algorithm 

as found a combination of 2 or more ANNs that perform similar to or better than a 
mgle ANN. As an example of the population evolution, figure 10.6b shows the trace 

a single run (run 9). The figure shows clearly that as soon as migration occurs ANN 
Models quickly take over the population. 

Figure 10.7a shows the generalization errors of the final best model found in each 
un. Each bar shows the error histogram of the final best model for each run on the 
d e p e n d e n t test set (lighter is better). The evolution of the error histogram for one 

Particular run (run 9) is shown in figure 10.7b (lighter is better). Both plots show that 
n e generalization error is very good: an error of less than 0.01 on roughly 90% of the 
nseen data, and less than 0.1 on the remaining 10%. Remember that usually such test 
ata is not available, it is simply used here to illustrate the accuracy of the model and 
as not used during the modeling in any way. A plot of the final best model for run 9 

« shown in figure 10.8. 
The model shown is an ANN with two hidden layers (size 8 and 9) and 120 free 

Parameters (weights). The complexity was determined automatically from a starting 
•complexity of 3 units in each layer. 

Finally, table 10.2 shows the different errors averaged over all 14 runs. The table 
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avg: [ 4.00 00 45.90 00 00 0.14 ] 
std: [ 7.60 00 7.55 00 00 0.36 ] 

(a) The composition of the final population in each run. 
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(b) The evolution of the composition for the 9th run. 

Figure 10.6: Model type selection results for the combustion modeling problem. 

also includes the results of running the different surrogate model types standalone. The 
table shows the RRSE on the validation set (the fitness value) and the RRSE and MREu 
on the test set respectively. The average running times are shown as well. 

Table 10.2 shows that, despite the somewhat odd data distribution, all model types 
can fit the data reasonably well. However, only ANNs are able to reach the target 
accuracy of 1%. Comparing the standalone ANN results with the automatic model 
type selection we see that the differences are negligible. The automatic algorithm 
performs just as well as the best single model type run, at the cost of doubling the 
running time (due to the much larger population size, 50 versus 10). The advantage, 
however, is that the larger population size allows for more robust performance (cfr. the 
lower value of a for the running time) and that the population size for each model tyPe 
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avg: [ 00 00 11.70 75 12 1.36 ] 
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(a) Test error histogram of the final model in each run. 
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(b) The evolution of error histogram for the 9th run. 

Figure 10.7: Accuracy results for the combustion modeling problem. 

varies dynamically, proportional to the quality of fit. Remember, though, that in any 
r e al application the modeling cost will still be largely outweighed by the simulation 
cost. 

10.5 Airfoil design example 

AW.5.X Background 
Th 

ne next example is an application from aerodynamics. It is based on "Airfoil Geom-
y Design for Minimum Drag" by Z. Wang [462] and is a nice example of airfoil 

e s ign. [462] is concerned with finding an optimal design of a wheel fairing (or wheel 
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Plot of temp using ANNModel 
(built with 488 samples) 

Figure 10.8: Normalized temperature plot of the final ANN model (CE, run 9) 

Type Tune 

(min) 

Validation 

error (RRSE) 

Test error 

(RRSE) 

Test error 

(MREa) 

Spline 360 140 4.20e-02 1.62e-02 5.42e-02 3.83e-03 4.25e-02 

ANN 133 107 9.85e-03 3.86e-04 5.12e-02 1.13e-03 3.92e-02 

Rational 360 3.00e-02 0 2.23e-01 0 3.73e-01 

LS-SVM 360 2.97e-02 7.50e-04 7.01e-02 5.37e-03 5.88e-02 

RBF 360 2.16e-02 5.68e-04 5.63e-02 3.41e-04 4.08e-02 

Automatic 274 74 1.01e-02 1.09e-03 5.21 e-02 2.01e-03 3.96e-02 

Table 10.2: Comparison of the final accuracies achieved by each model type (combustion 
modeling problem). 

pant) on a solar powered vehicle. When designing airfoils, the typical goal is to opti' 
mize the lift-to-drag ratio 7 5 ^ , i.e., design an airfoil that has a high lift while having 
not a too high drag coefficient. However for a wheel fairing for a vehicle or airplane 
the main aim is to have a low drag coefficient Cd. There are several published standard 
airfoils, for example the NACA series of the, now dissolved, National Advisory Com' 
mittee for Aeronautics [463] who created series of airfoils for different purposes using 
analytical equations (see figure 10.9 for an example profile). Nonetheless, in many 
cases it is useful and more efficient to create a custom-made design. 

In this case Xfoil [464] is used to evaluate the performance of custom airfoils* 
while Matlab is used to construct different airfoil geometries searching for the optimum 
design, and calculating the objective function. The original optimization problem jS 

defined as: 

min Airfoil Geometry Drag (Airfoil Geometry) 
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Figure 10.9: The NACA 4415: A wheel fairing airfoil [463]. 

subject to 

Desired Thickness — Thickness(Airf oil Geometry) < 0 

where the actual objective is constructed as Drag(AirFoil Geometry) = C^ + Cd — 
nun(pressure3). C'd denotes the drag coefficient at degree of attack i, min (pressure3) 

s the minimum pressure at degree of attack 3 and k is a weighting constant set to 
•OO200. The original goal of [462] was to design a wheel fairing airfoil that would 

Perform better than a NACA four digit airfoil. The following Xfoil options were used: 

• Viscous mode is on 

• Reynold number is 106 

Maximum number of iterations is 50 (viscous-solution iteration limit) 

There is auto point accumulation to active polar 

echnically it works as follows. Initially, an airfoil geometry is generated with the 

phne toolbox of Matlab (using 4 control points). A discretization of this spline is saved 
a hie. Subsequently, this file, along with Xfoil instructions, is fed into Xfoil which 

rnulates wind flow (computational fluid dynamics) and returns several performance 
etrtcs saved in a file. This file is easily read into Matlab which is able to combine 

tv> J e °-rag coefficient and maximum pressure into the aggregated objective mentioned 
above. 

Summarizing the whole setup, there are 4 inputs (x,y,t],t2) and 1 output Drag. 
n e first 2 input parameters implicitly define 2 control points with coordinates (x,y) 

v*> ~-;y)- The other two control points are endpoints of the airfoil and are fixed at 
^ '0 ) and (0 ,1) respectively. The last 2 parameters are the tangents of these endpoints. 
This is illustrated in Fig. 10.10. 
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Figure 10.10: Optimal airfoil geometry. 

However, in some cases knowing the optimum is not sufficient. Instead global 
information (relationships between parameters, sensitivities, ...) is needed. Using a 

global surrogate a designer is able to explore the design space in a more efficient man
ner, directly locating interesting designs, and gaining more insight into the behavior oi 
the system. 

10.5.2 Experimental Setup 

The airfoil geometry problem has been modeled with the S U M O Toolbox using the 
same XFoil setup and objective function as [462]. The additional S U M O toolbox con
figuration was chosen as follows: A Latin Hypercube design of 20 points is generated 
and added to the 18 corner points to obtain 38 initial samples. New samples are adap
tively chosen by the LOLA-Voronoi algorithm up to a maximum of 500. An AlSTN 
model (using the same settings as the previous example) is used to approximate the 
data. The hyperparameter optimization is driven by the RRSE on a max-min valida
tion set of 2 0 % which grows adaptively as more samples become available. Outliers 
caused by failed simulations (complete failure or wrong results due to failed conver
gence of the solver) were removed during sampling. 

10.5.3 Results 
Figure 10.11 shows the plot of the final A N N model. The final model is a 4-14-2-1 
network with a RRSE of 0.01 on the validation set and (when the final model is trained 
on all the data) a 10-fold cross validation error of 0.17. Thus the attained accuracy is 

quite good. This is understandable, as Fig. 10.11 shows, the response is very smooth, 
almost parabolic, and thus easy to fit (this was further confirmed by using the S U M t ' 
model browser GUT). The model also shows the impact of the tangent t\ ,t2 parameters 
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e small. The three slices for t\ almost coincide, so we can safely say that the 
angent at the start point of the airfoil has virtually no effect on the combined drag, 
imilarly, the second tangent parameter t2 only influences the drag for ' thick' airfoils 

(large values of x). 

t2=-0 3 t2=-0 15 

0 03 

•g 0 025 

0 02 

0 03-t 

•S 0 0254 

™ 0 02 

Figure 10.11: Final 4-14-2-1 ANN model of Drag (t\, t2 are plotted at 3 fixed values: the 
minimum, maximum, and middle value. 

Besides a global model, the optimum is still of interest. Therefore, as a post-
Processing, the model was optimized (this can now be done very cheaply) using the 
D Iv idmg REctangles (DIRECT) [465] algorithm. This resulted in a Drag value of 
° -° l66 a t * = 0.4, y = 0.0833, t\ = 0.9167, t2 = - 0 . 0 5 . A plot of the airfoil geometry 
a t this optimal point is shown in Fig. 10.10. 

10.6 Metallurgy data 

10.6.1 Background 
s Part of a collaboration with a large steel company a neural network model was 

•instructed for data related to the composition of produced steel. Unconventionally, 
n e problem here was not that data was scarce but that it was too abundant. There was 
°o much data to be able to work with efficiently. A model was needed to summarize 

e d a t a in an efficient, analytical model. 

10.6.2 Results 
l n ce the available dataset was so dense, it was possible to adaptively sample from the 
a taset directly and grow the neural network accordingly. The surface the needed to be 
tted was far from trivial, yet the neural models were able to capture it very accurately, 

a s can be seen from figure 10.12. 
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Figure 10.12: Evolution of the error histogram (on a test set) during the adaptive sampling and 
adaptive modeling procedure (Metallurgy problem). 

10.7 Inductive Posts 

10.7.1 Background 

The next example is a 3D Electro-Magnetic (EM) simulator problem [373] (see also 
section 7.8.3). Two perfectly conducting round posts, centered in the E-plane of a rect
angular waveguide, are modeled, as shown in figure 10.13. The inputs to the simulation 
code are: the signal frequency / , the diameter of the posts d, and the distance between 
the two posts w. The outputs are the complex reflection and transmission coefficients 
S)\ and S2\ (Si2, S22 are, ignored due to symmetry). The simulation model was con
structed for a standard WR90 rectangular waveguide with / G[7 GHz, 13 GHz] , d €\\ 
mm, 5 mm] and w e [ 4 mm, 18 m m ] . 

i 

u 
t 

H J 

Figure 10.13: Cross sectional view and top view of the inductive posts (from [373]) 

For validation purposes an independent test set evaluated on a dense grid is avail' 
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able. It is used as an objective measure to gauge the accuracy of the final model. It 
l s not involved in the modeling process in any way, instead cross validation is used. 
Obviously, in a 'real ' setting such an objective measure is not available, we just use it 
here to illustrate that the modeling actually works. 

10.7.2 Experimental setup 

°r the EM example the settings were as follows: an initial optimized Latin hypercube 
design (constructed using the method described in [242]) of size 20 is used augmented 
With the corner points. Modeling is allowed to commence once at least 90% of the 
initial samples are available. Each iteration a maximum of 10 new samples are selected 
using the LOLA-Voronoi adaptive sampling algorithm. 

We use rational models since they are most adequate for this type of problem: the 
ransfer function of the inductive posts system is a rational function and the final model 

can be used to check if EM laws are violated (e.g., passivity). Also, they are able to 
ttiodel coinplex valued data directly. This is not possible with other approximation 
methods like ANNs and SVMs 4 . For such methods the complex data must be split into 
real/imaginary or phase/amplitude parts (at the cost of an accuracy, performance, and 
mterpretation penalty). 

The hyperparameters of the rational functions (order of the polynomials, which 
variables should be in the nominator/denominator, etc.) will be optimized using a 
custom stochastic hill climber (though a GA or PSO algorithm could be used as well) 
U74]. In this case 5-fold cross validation is used as the model selection measure. The 
error function that is minimized is the root relative square error (RRSE): 

With y the mean true response. Intuitively the RRSE indicates how much better an 
aPproximation is than the most simple approximation possible (the mean). In addition 
w e also record the adjusted Maximum Relative Error (MREa) 

MREa{y$)=maK$^p\) (10.7) 
i I p ; / | 

°n the test set. Note that the MREa degrades to the maximum absolute error for small 
v a luesof 1^1. 

The SUMO Toolbox terminates if the number of samples exceeds 500 or the accu-
r a cy drops below 0.02. 

Complex versions of ANN training algorithms have been proposed but numerous problems still need to 
c overcome before they can approach the power of their real-valued counterparts. The authors arc unaware 

complex formulations of SVMs. 
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10.7.3 Results 
The final errors for each output are shown in table 10.3 and the plot of the magnitude 
of the final best models is shown in figure 10.15. Table 10.3 shows the 5-fold cross 
validation error and the number of samples used ( |X|). The evolution of the test error 
histogram is given in figure 10.14 (the lighter the region the more test samples with 
low error). 

Output 

Su 

S\1 

\x\ 
438 

438 

Cross validation error (RRSE) 

5.79c-03 

1.82c-02 

Test error (RRSE) 

3.90c-03 

1.51c-02 

Test error (MREa) 

7.03c-02 

6.39c-02 

Table 10.3: Accuracies of the final inodels for the inductive posts example. 

Evaluating the results, we see that the accuracy targets for both outputs are reached 
after 438 data points ( ^ 7 . 5 per dimension). Note that this number may be lower # 
both outputs are modeled separately. Since S\ j is easier, its accuracy target is reached 
after just 233 samples. Regarding the test error histogram plots in figure 10.14, we see 
that the final generalization error is very low but that progress is rather erratic. This 
is to be expected since we are not using an exact measure to drive the hyperparameter 
optimization process. The cross validation error is only an approximation of the true 
error. 

100 200 300 400 100 200 300 400 
Number of samples Number of samples 

(a) Su (b)Si2 

Figure 10.14: Evolution of the test error histogram (Inductive posts example). 

As a final remark, the cross validation errors given in table 10.3 are the global, 
averaged values but say nothing of the uncertainty of the model over the domain. Re
sampling strategies like the cross validation procedure, the .632+ bootstrap, or Jack-
knife, can also be used to produce an estimate of the prediction uncertainty at an ar-
bitrary point. This can be done as a post-processing step to increase confidence in the 
final model. An alternative but similar approach is to combine a diverse collection oi 
models into an ensemble and use their disagreement as a measure of uncertainty. J*1 

the case of the SUMO Toolbox this can be done by using the k best models generated 
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Rational mods! built with 43S samples 
3 slices for w 

Rational model built with 438 samples 
3 slices for w 

(a) \S HI (b) |S, 

igure 10.15: Normalized plot of the final rational model for the inductive posts example (w is 
clamped at -1 (blue), 0 (green), 1 (red)). 

y the toolbox (with k > 1), instead of using jus t the best mode l . Another, more com
plex, alternative is to apply Bayesian Mult i -Chain M o n t e Car lo ( M C M C ) methods to 
generate credible intervals and hyperparameter uncertainty bounds . References cov-

n r i g these topics (including model specific error propagation metrics) can be found 
in [466-468] . 

!0.8 Double Folded Filter 

*«.8.1 Background 

he third and final application from electronics is concerned with the problem of mod-
e u n g a parametr ized double-folded microstr ip stub bandstop filter [229]. The filter is 
shown in figure 10.16. 

Figure 10.16: Double-folded microstrip stub bandstop filter 

The substrate is 0 .1270 m m thick with a relative dielectric constant er = 9.9 and 
loss tangent tan 5 = 0 .003. The parametr ic macromodel of the scattering matrix is 
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built as function of the varying length of each folded segment L G [1.97,2.41] mm and 
varying spacing between a folded stub and the main line S G [0.06,0.24] m m over the 
frequency range [5,20] GHz. The E M simulation engine used is ADS Momentum. 

In order to objectively assess the accuracy of the models, a dense 50 x 30 X 151 
(L x S x frequency) reference grid was calculated. It is important to note that this 
dataset is not used during the modeling process in any way since typically such a 
reference grid is not available. It is simply used to objectively test the quality of the 
models a posteriori. 

10.8.2 Experimental setup 

The S U M O Toolbox is configured with the generic A N N and multivariate rational 
modeling plugins. The multivariate rational models are based on a custom imp*e ' 
mentation [155]. The order selection is performed using a genetic algorithm (popula
tion size: 30, number of generations: 20), thus this need not be done manually. The 
model accuracy estimator is 5-fold cross validation [204,425] configured with a Mean 
Square Error (MSE) error function. The A N N models are based on the Matlab Neu
ral Network Toolbox and are trained with Levenberg-Marquard backpropagation with 
Bayesian regularization [271,272] (600 epochs). Since the A N N models do not supp° r t 

complex data directly, the real and imaginary components are fitted separately using a n 

A N N model with two outputs. The topology and initial weights are determined by an 
evolutionary strategy-like algorithm, with 25 models being generated each modeling 
iteration. To assess the model quality and drive the topology selection is taken as the 
sum of two criteria is optimized by the evolutionary strategy: the in-sample error (us
ing a MSE) and the Linear Reference Model (LRM) score (chapter 9). The combined 
scores for each output (real/imaginary) are then added together to obtain the overall 
score of the model. The L R M score penalizes a model if it exhibits unwanted bump s 

or 'r ipples ' between the sample points. It can be seen as a kind of smoothness penalty 
that has the added benefit of keeping the neural network model complexity low. The 
advantage of using these two metrics together is that they produce better A N N models 
and are much faster to evaluate than cross validation. 

The modeling starts with a Latin hypercube design of 4 points augmented with the 
corner points in the 2-dimensional L x S space. Each iteration a new sample is selected 
using the LOcal Linear Approximation-Voronoi (LOLA-Voronoi) adaptive sampliuS 
algorithm [239]. Because frequency is sampled automatically by ADS Momentum. 
LOLA-Voronoi samples in the 2-dimensional instance space defined by the geometric 
parameters L and S. New samples are submitted to ADS Momentum, which returns a 
set of S-parameters over the frequency range of interest. In order to select a sampl6 

in the reduced 2-dimensional design space (without the frequency parameter), slices 
are taken at multiple frequencies, and LOLA-Voronoi is used on each slice separately-
This results in a nonlinearity estimation for each frequency slice, covering the entire 
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-dimensional design space. These estimations are aggregated into one score, which 
used to select new samples in locations with the highest nonlinearity over the entire 

frequency range. 

Momentum is configured to return 31 frequency samples and the SUMO Toolbox 
l s set to terminate after 136 instance simulations (136x31=4216 data points). Thus 

stead of using an explicit target accuracy value, simulations are performed until the 
computational budget is exhausted. 

10.8.3 Results 

gure 10.17 shows a plot of the final rational models for 5 n andSi2- For space reasons 
e following discussion will only treat S\\. The results for S\2 are completely anal-

gous. A snapshot of the sample distribution after 14 Momentum simulations (434 

15 10 
length (mm) 

frequency (GHz) 

Figure 10.17: Plot of the final rational model for \Si i \ and \S\2 \ at S = 0.131 

P°mts) is shown in figure 10.18. The figure nicely illustrates how the adaptive sam-
l n S only occurs on the geometric design parameters and that the frequency is densely 
tupled by Momentum itself. This is significantly more efficient that adaptively sam-

P l n g in the full parameter space. 
figure 10.19 shows that the ANN model generation code is able to reduce the 

e error (evaluated over a dense reference grid) quite effectively while minimizing 
e estimated error. This means that the in-sample error/LRM combination is a good 

PProximator of the true accuracy. In line with previous results [241] we see that 
e decrease in true error is quite steady with no large jumps. This can also be seen 
om figure 10.20 which shows how the distribution of the reference data errors evolve 

r i r ig the model generation process. The figures show a steady increase of the lighter 
eas which means an increasing proportion of the reference data points have low error. 
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Figure 10.18: Snapshot of the sample distribution for S^ \ after 14 simulations (rational 
models). Plot (i, j) with i ^ j shows the sample points projected onto the ith and j 

dimensions. Plot (i,j) with i = j shows the sample histogram for dimension i 
(L= \,S = 2, frequency = 3). 
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Figure 10.19: Evolution of the true and estimated error over the reference data during the AN™ 
topology optimization. Note the true error is not minimized directly, it is only shown 

here for reference. The number of samples should be divided by 31 to obtain the 
number of Momentum simulations. 
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rigure 10.20: Evolution of the true error histogram (using a relative error) over the reference 
data during the ANN topology optimization. More lighter regions mean a higher 

percentage of the reference points have a low error. The number of samples should be 
divided by 31 to obtain the number of Momentum simulations. 

The error histogram (using an absolute error) for the final best ANN model found 
y the toolbox after 136 Momentum simulations is shown in figure 10.21. The figure 
l s obtained by using kernel density estimation [469] to estimate the true probability 
density function of the errors. The figure shows that very good accuracy is achieved, 
^ote also the small difference between the training and test curves, meaning there is 
no overfitting and the models show good generalization. The final ANN model for S\ \ 
1 S a 3 - 8 - 1 6 - 2 network (210 parameters) and for S\ 2 a 3 - 12 - 15 - 2 network (275 
Parameters). 
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Figure 10.21: Probability density function of the absolute errors of the final ANN model over 
the training and reference data after 136 simulations. 

Let us now regard the results for the multivariate rational functions. The evolu
tion of the error histogram of the best model on the reference data during the model 
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generation process is shown in figure 10.22. Compared to the ANN results in figure 
10.20 we see that the error reduction is more erratic in the rational case. Particularly 
in the beginning, when only little data is available. This is due to the use of cross val
idation as the accuracy estimator. Even though we ensure an even distribution of the 
different folds, when data is relatively sparse cross validation is known to give biased 
results [425] and can mislead the order selection procedure. This can also be seen from 
figure 10.23. 

100 

en 
<o 
E 

1000 2000 3000 
Number of samples 

4000 

e >= 100% 
100% > e >= 10% 
10%>e>= 1% 
1 % > e > = 0 . 1 % 
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e < 0 . 0 1 % 

Figure 10.22: Evolution of the true error histogram (using a relative error) over the reference 
data during the rational model order selection. More lighter regions mean a highet' 

percentage of the reference points have a low error. The number of samples should be 

divided by 31 to obtain the number of Momentum simulations. 

The error histogram (using an absolute error) for the final best rational model foun" 
by the toolbox after 136 Momentum simulations is shown in figure 10.24. Again, goo" 
accuracy is achieved on S\\, with the mean accuracy being better than for the ANJ^ 
models. Given the rational nature of the underlying transfer function this should no 
be a surprising. However, it should be noted that the modeling effort was not the same 

for both model types. Since the rational functions are fast to construct and train v^e 
can afford to build more of them during each modeling iteration than neural network 
models (since these are much slower to train). In this case 20 x 30=600 rational models 
are built each modeling iteration versus only 25 neural networks. 

The final models used to plot figure 10.24 consisted of 513 parameters for S\\ 
and 672 parameters for S\2. Note also the small difference between the training an 
reference data distributions, this means the models again show good generalization. 
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gure 10.23: Evolution of the true error and estimated error over the reference data during the 
rational model order selection. The number of samples should be divided by 31 to 

obtain the number of Momentum simulations. 
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^gure 10.24: Probability density function of the absolute errors of the final Rational model 
over the training and reference data after 136 simulations. 

10.9 Tapered Transmission Line 

10.9.1 Background 
w e stay in the electronics domain . T h e next appl ica t ion involves a h igh - speed 2-por t 

1 C r owave structure. T h e goal is to m o d e l the complex e lec t ro-magnet ic behav ior of 
this sys tem. This behav ior can be charac ter ized by the scat ter ing pa ramete r s or S-
Parameters , w h i c h descr ibe the r e sponse of an N - p o r t sys tem to s ignals at each port , 

nese S-parameters arc a function of the geometr ica l pa ramete r s of the sys tem (length, 
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substrate parameters, dielectric constants, ...) as well as the frequency. Like in the 
previous application, the frequency is again treated as a special parameter. 

In this particular example we model the (complex) reflection coefficient S] 1 °* 
a lossless exponential tapered transmission line terminated with a matched load, as 
described in [224,470] . This structure is displayed in Fig. 10.25, where ZQ and At 
represent the reference impedance and the load impedance respectively. The reflection 
coefficient S\\ is modeled as a function of the relative dielectric constant er <£ [3,5J 
and the line length L <G [ lew, 10cm], as well as the frequency f <G [lkIIz,3GFIz\. The 
simulator, however, only accepts 2 inputs: £,- a n d i . For each combination of these two 
inputs, the output for a complete set of frequency ranges, linearly distributed over the 
frequency range, is computed and returned for modeling. 

0 L x 

Figure 10.25: An exponential tapered micro strip transmission line. ZQ = 50Q and Zr = 100S* 

10.9.2 Experimental Setup 
This system was modeled with A N N models using a genetic algorithm to optirntZ6 

the topology and the initial weights. The GA was run for 10 generations between 
each sampling iteration with a population size of 10. The network itself was trained 
using Levenberg-Marquardt backpropagation in conjunction with Bayesian regulariza
tion [272] for 300 epochs. The initial experimental design is a Latin hypercube dcsign 

of 9 points in the 2-dimensional geometric parameter space. For each of these points* 
30 frequencies values were returned, resulting in a total of 270 initial data points. From 
then on, each sampling iteration LOLA-Voronoi selects 2 additional sample locations? 
resulting in 60 more data points, up to a total of 1 000. 

Because the A N N implementation that is used does not support complex data di
rectly, real and imaginary parts were modeled separately. Two different approaches 
were tried. In the first approach, a separate model was trained for each component oi 
the complex output. In the second approach a single model was trained to model both 
components (as two separate real numbers), resulting in a considerable gain in spceu 
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the (possible) cost of some accuracy. At the end, these two real outputs are then 
ornbmed again to produce a model of the original complex output parameter. 

l « 9 . 3 Results 

ne results arc summarized in Table 10.4. A plot of the modulus of the best model 
Produced using separate neural networks for the real and imaginary part can be found 

0.26. The accuracy of the inodels was calculated by testing the models on a dense 
set of 6750 points which was not used for training. Two measures were calculated: 

e root relative square error (RRSE) and the maximum absolute error (MAE). 

p__ 

RRSE 

ANN Split 
Real 

f3 .38E-3 
^1.85E-4 

Imaginary 
3.19E-3 
1.42E-4 

Complex 
3.31E-3 
2.57E-4 

ANN Combined 
Real 

4.60E-3 
3.00E-4 

Imaginary 
6.18E-3 
3.13E-4 

Complex 
5.19E-3 
4.73E-4 

able 10.4: The error of the models on a external test set of 6750 points. The results from 
training with separate networks are on the left, the results from training with only one 

neural network are on the right (tapered transmission line example). 

0.4 -, 

0.3-

rT 0 .2-

0.1 

0.06 0.08 0.1 3 
eps 

length 

figure 10.26: A plot of\S[ \ \ using two separate networks for the real and imaginary 
components (tapered transmission line example). The model is shown at three 

frequency slices (minimum, maximum, and middle frequencies). 

As expected, by training the real and imaginary part with a separate neural net-
TK a small accuracy improvement can be obtained at the cost of a longer run time. 
Wcver, both approaches performed very well, producing models with a root relative 

Square error of less than 0.01 after only 570 samples. By adding another 1000 samples, 
accuracy can be further improved by almost a factor 10. This can be seen in Fig. 
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10.27. The left plot shows the evolution of the error on the real part, while the right 
plot shows the evolution of the imaginary part. This plot represents the percentage of 
samples in the test set that have an error in the a range corresponding to a particular 
shade of grey on the plot. 

| e>= 1e0 
| 1 e 0 > e > = 1S-1 
11.e-1 > e > = ^ ' i 

l 1 e ~ 2 > e > = 1 e - 3 

C " _ r i 1 . e - 3 > e > = 1 e - 4 

: 1 e-4 

800 1UUO 
Number of samples 

(a) rca](5,;) 

800 1000 
Number of samples 

(b) imagC^n) 

1400 

Figure 10.27: Evolution of the test error histogram using a relative error (tapered transmission 
line example). 

This plot shows that the error decreases steadily as the number of samples increases 
for the imaginary part, but oscillates slightly for the real part. When more sampleS 

are evaluated, the model might have to find new optima for its hyperparameters, thus 
temporarily causing a drop in accuracy while the parameter space is explored. 

10.10 Others 
Finally, we give a couple of uncategorized examples of data that has been fitted with the 
SUMO Toolbox. As mentioned at the start of this chapter, more supporting material or 
movies can be found at t i t t p : / / s u m o l a b . b l o g s p o t . com and h t t p : //wwW' 
y o u t u b e . c o m / u s e r / s u m o l a b . 

Figure 10.28 shows a model of the 2D Schwefel function, its mathematical formu
lation being 

d , , . 

f(x) = 418.9829 •d+y£xism(vf\x7\) (10-8) 

with Xi defined on [-500,500]. 
Much less regular and smooth is the Langermann function, defined as 

i = l 

|x-^(0 
- C O S ( TZ 0 •^(0112) (10.9) 
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Plot of out using KrigingModel 
(built with 1517 samples) 

2000 

-0.5" ^^0m*^fo 
-1 -1 

Figure 10.28: Kriging model of the Schwefel function after 1517 points. 

with m — 5 and Xj € [0,10]. The values of the matrices A and c can be found in the 
"nplementation. An LS-SVM model of this function is shown in figure 10.29. 

Plot of out using SVMModel 
(built with 1504 samples) 

Figure 10.29: LS-SVM model of the Langennann function after 1504 data points. 

figure 10.30 then shows a Kriging model of a completely different type of data: 
°rnetric data resulting from a high resolution laser scan of Michelangelo's David. 

In section 4.9 we discussed how the SUMO Toolbox framework can also be used 
solve classification problems. To illustrate this we applied SUMO to the classical 
°~sprial problem where the goal is to separate two intertwined spirals. Using the 
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Figure 10.30: Kriging model of geometric data of the face of Michelangelo's David. Data 
courtesy of the Digital Michelangelo Project from Stanford University. 

SVM plugin with adaptive sampling and hyperparameter optimization this can easily 
be done. A plot of the final classifier is shown in figure 10.31. 

Plot of y using SVMModel 
(built with 186 samples) 

Figure 10.31: Final SVM classifier solving the two spiral problem. 

An interesting benefit of a classification approach (though a regression approach 
would work as well) is that this can be applied to the modeling of geometric data from 
arbitrary three dimensional objects. The idea is to create an analytic model to represent 
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a 3D structure. Popular techniques for this are RBF models (the FastRBF library) or 
Neural Models (spherical Self-Organizing-Map, neural-GAS). For the purpose of this 
dissertation we just give a proof of principle example to show how the SUMO Toolbox 
infrastructure could be used to achieve this using the standard plugins. 

The approach is simply to regard the 3D geometric modeling problem as a classi
fication problem where the function value of a 3D Cartesian point maps to -1,+ 1, or 
0 if the point is situated inside, outside, or on the object. If the object is represented 
as a triangular mesh this can easily be calculated, though it requires the object to be 
closed. In essence this is a 3D classification problem which can be solved just as any 
other. Once the model is fitted on the data one simply needs to plot the isosurface of the 
model at zero in order to obtain the object. Figure 10.32 shows a simple example for a 
3D model of a cactus. The figure shows the isosurface of an SVM classifier trained on 
the geometric data. The training was done on relatively few points so the surface is not 
very smooth. Using more data and putting more effort into the modeling process will 
improve the results, but we simply show it here as a proof of concept illustration. 

Figure 10.32: Proof of concept illustration showing the zero-isosurface of an SVM classifier 
trained on 3D geometric data from a cactus. Data courtesy of 

www. advancedmcode. org. 
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Conclusion 

When you have completed 95 percent of your journey, you are only halfway 
there. 

~Japanese proverb 

•*-l-l Summary 
In 

n many science, and engineering problems researchers make heavy use of computer 
simulation codes in order to replace expensive physical experiments and improve the 
Quality and performance of engineered products and devices. Such simulation activities 
are collectively referred to as computational science and computational engineering. 

Unfortunately, while allowing scientists more flexibility to study phenomena under 
controlled conditions, computer simulations require a substantial investment of com
putation time. One simulation may take many minutes, hours, days or even weeks, 
quickly rendering parameter studies impractical. Of the many ways to deal with this 
Problem, this dissertation has focused on the use of data based global surrogate models 
° r a particular class of problems (cfr. section 1.1.2). The goal being to generate a sur

rogate that is as accurate as possible, using as few simulations as possible, and with as 
ittle overhead as possible. Once such a surrogate is available, it can be reused further 
°wn the engineering design pipeline. 

In the course of this dissertation we have discussed the motivation that drives sur-
r°gate modeling research (chapter 2), described in depth the different sub problems 
hat are involved in applying it successfully (chapter 3), and a comprehensive software 



www.manaraa.com

11-2 C H A P T E R 1J 

platform that brings together different approaches in a flexible, re-usable, extensible 
framework (chapter 4). The importance of the availability of ready made software is 
worth emphasizing. Without backing in software many ideas and new algorithms re
main confined to the papers that describe them, using a format and applications that 
are often hard or impossible to reproduce independently. The availability of a toolbox 
implementing all algorithms discussed in this thesis at least allows for full individual 
experimentation, comparison, and augmentation. 

Besides these topics, this dissertation also explored how concepts from distributed 
computing (chapter 6), evolutionary computing (chapter 7), and multi-objective opti
mization (chapter 8) can be used to further improve the surrogate modeling process-
Using a large number of problems from many different application domains as illus
trating examples. Thus, in summary, this thesis has operated on the meta level. It has 
not focused on one particular technique or problem, but rather on how existing meth
ods and technologies can be combined and integrated in an efficient way in order to 
optimally benefit a domain expert and the solution of his design problem. 

11.2 Research challenges 

Reflecting back on the research challenges listed in section 1.2, the overarching chal
lenge was to fill in the question mark in figure 11.1 with a workflow that can produce 
an accurate global surrogate model at a minimum computational cost and overhead. 

Simulation code 

Requirements 
and Constraints 

Figure 11.1: Surrogate modeling research challenge 

This dissertation has tackled this challenge through the design and implementation 
of the S U M O Toolbox framework which is discussed in depth in chapter 4. Given & 

simulation engine or other data source that meets the requirements from section 1.1-2' 
the S U M O Toolbox can adaptively generate an accurate global surrogate model withU1 

the accuracy and budget requirements defined by the user. Judging by the many dif fef' 

Minimize cost 
Minimize overhead 
Maximize accuracy 

Accurate global 
surrogate model 
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ent uses of the SUMO framework (section 11.3), the many downloads (section B.4), 
and the authors' own experience from interacting with users; we can conclude that 
the SUMO framework is quite successful in replacing the question mark in figure 1.2. 
thus, bearing in mind the critical remarks from section 4.10, the main research chal
lenge has been accomplished. 

Concerning the generality-specificity sub-challenge, as discussed in the disser-
ation, theoretical work from machine learning [164] suggests this is impossible to 

solve in an a priori manner (see also section 3.7.2). Many advanced algorithms have 
been presented for model parameter optimization [21, 177,358], adaptive sampling 
[157,471], model selection [127, 170,472], and knowledge inspired modeling [74]. 
towever, no algorithm is optimal in all circumstances [4 ,44,67] . The optimal algo

rithm will depend on the problem characteristics and is usually very hard to determine 
lP front. To add to the difficulty, there is a complex dependency web between the dif-
erent sub-problems. The best sampling strategy will depend on the model type, which 
s linked with the hyperparameter optimization strategy, which in turn, depends on the 

model selection method, etc. 

All the more reason that it should be very easy to try out, add, and compare different 
tgorithms and approaches, a core design decision of the SUMO framework. For while 
n e can never guarantee the optimal solution, a flexible system that allows different 
Pproaches to be easily tried, possibly with some added automation, will still lead to 

good solutions which satisfy the requirements. While at the same time giving more 
onfidence that the different alternatives have been explored in a systematic manner. 

This brings us to the accessibility sub-challenge, ensuring that advanced surrogate 
odeling algorithms can easily be used and integrated into the larger design process, 
his has been achieved on different levels (see also sections 4.7 and 4.8): 

* Simulator level: the requirements on the format of the data entering the SUMO 
framework have been kept as simple as possible, i.e., ASCII based, one line per 
point. A GUI is currently under construction to also automate the generation of 
the necessary XML files. In addition the different SampleEvaluator classes make 
it straightforward to connect any data source (text file, shell script, executable) 
with the framework and new subclasses can be added to support more complex 
data formats (e.g., Microsoft Excel files). 

Framework level: by adopting a modular design and minimizing the complex
ity of the plugin API, the code is logically structured and can be reviewed or 
changed if needed. New plugins can easily be added if the basics of object ori
ented programming are understood and a large number of plugins are already 
available that can serve as guiding examples. In addition, the whole framework 
is available under an open source license (The Affero GNU General Public Li
cense1) thus encouraging code contribution and reuse. 

•"•ttp : //www . f s f . o r g / l i c e n s i n g / 1 1 c e n s e s / a g p l - 3 . 0 . h tml 
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• Application level: once a model has been generated, a user friendly GUI tool 
is available to allow a domain expert to explore the model in an intuitive fash
ion. Many helper methods are also available that provide access to information 
like derivatives and prediction uncertainty estimation. The model objects car* 
be compiled to standalone C code using the Matlab to C compiler or can he 
exported to a standalone Matlab script or mathematical expression. While this 
export functionality is currently not available for all model types, it is just a mat
ter of implementation. A further improvement would be to also integrate export 
functionality to standard commercial CAD/CAE tools like ADS Momentum oi 
Simulink. 

In addition some work is currently underway in order to expose SUMO Toolbox in
stances on the network (cfr. section 6.6), facilitating integration even further. 

11.3 The S U M O Toolbox: Applications and Users 

Since the SUMO framework formed the cornerstone of this dissertation, it is worth re
viewing the applications the framework has been involved in. The application domains 
covered in this dissertation include: 

• Electronics: chapter 5, sections 10.7, 10.9, and 10.8 

• Hydrology: section 10.3 

• Structural dynamics: section 9.4.2 

• Chemistry: section 10.4 

• Automotive: section 8.5.3 

• Metallurgy: section 10.6 

• Demography: section 7.8.5 

• Aerodynamics: sections 8.5.4 and 10.5 

• Bio-physics: section 6.7.2 

Other applications not mentioned in the dissertation and which are currently ongoing' 
have recently been published, or will be published in the near future are: 

• Material Characterization of patch antennas, EM Group, Dept. of Information 
Technology, Ghent University 

• Modeling of the electrical behavior of a H-Antenna, IBCN Group, Ghent Uni' 
versity 
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Magnetic Material Characterization, Lab on Electrical Energy, Systems & Au
tomation, Ghent University [473] 

Geometric design optimization of a microwave narrow-band filter, SUMO Lab, 
Ghent University [474] 

Trade-off analysis of LNA performance parameters, NXP Semiconductors, The 
Netherlands 

he above examples are applications where one of the research group members is 
closely involved. The SUMO Toolbox has seen quite a few uses and applications by 

l r d party researchers. Of those applications, the ones that we are aware of that are 
currently ongoing include: 

• Flocculant adsorption, CSIRO, Australia [475] 

* Electronic Packaging, North Carolina State University, Raleigh, USA [476] 

Modeling the chemical processes in fuel cells, Fuel Cell Materials and Manufac
turing Laboratory, University of Toronto, Canada 

Modeling and optimization of the Gas-Metal-Arc welding process, Welding and 
Joining Institute, RWTH Aachen, Germany 

Multi-class classification and data mining, Kaunas University of Technology, 
Lithuania 

°r more information regarding downloads and usage refer to appendix B. 

H.4 Future Work 
n e path of scientific research is of course one that is continuously ongoing. This 
!ssertation has covered a broad range of topics and applications, and much is still 
tt to be explored. Some of these topics of future work have already been covered in 

section 4.10. 
Most pertinent in this area is the issue of parameter screening or dimensionality 

°-Uction. The number of variables that can be routinely tackled is continuing to rise. 
here is a constant demand from domain experts to be able to take into account more 
ud more parameters. Due to the curse of dimensionality global models quickly be-
ome infeasible and current data fitting methods can no longer be applied with high 
ccuracy. However, as Keane and Nair state in [4], one should keep in mind that: 

Across domains like vision, speech, motor control, climate patterns, hu
man gene distributions, and a range of other physical and biological sci
ences, various researchers have reported evidence that corroborate the 
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fact that the true intrinsic dimensionality of high dimensional data is of
ten very low [..]. We interpret these findings as evidence that the physical 
world has a significant amount of coherent structure that expresses itself 
in terms of strong correlations between different variables that describe 
the state. 

Focus must be placed on dimensionality reduction methods, ranging from statistical 
variable screening methods to domain decomposition and local learning approaches-
The challenge is to ensure such techniques can readily and easily be applied by non
experts through readily available software. Integration of such a framework for p a " 
rameter screening into the SUMO Toolbox would greatly increase its usefulness and 
appeal. Specialized support for discrete parameters would also help in this respect. 

A second challenge linked with the problem of increased dimensionality is the 
integration of domain specific knowledge. Besides dimensionality reduction this is 
the only way to ensure problems of the future can be tackled effectively. Again much 
research on knowledge integration techniques has been conducted. The challenge m 
the future is to to make them easily accessible to non-modeling experts so they can 
easily be applied to existing data fitting types and application domains. The addition 
of such a framework to the SUMO Toolbox would again be a good asset. 

The difficulty of such works is to sufficiently hide the complexity of the modeling 
problem from the user without compromising performance. Adaptive algorithms witn 
self-regulating parameters are a powerful and promising way to achieve this. However, 
dealing with the computational cost they incur is non-trivial. This is an area that Win 
definitely benefit from further hardware developments. 

The author also sees a promising application of the ideas from fuzzy theory ano 
knowledge capturing techniques to the surrogate modeling process. This would alloW 
a domain expert or engineer to express his modeling requirements in a more natural 
way. Progress in natural language processing will also help in that respect. Conver
gence of these fields, though far from trivial, holds promising advances in design and 
optimization software and interaction models. 
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Evolutionary Neuro-Space Mapping 
Technique for Modeling of Nonlinear 

Microwave Devices 

A.1 Introduction 

Vtodeling and computer-aided design (CAD) techniques arc important in helping mi-
rowave designers to achieve efficient design of linear and nonlinear microwave cir

cuits. In recent years, artificial neural networks (ANNs) [477] and space mapping 
1' o] have been recognized as two important developments in microwave CAD to ad-
rcss the growing computational challenges in modeling, simulation and optimiza-

10n. ANNs can be trained to learn microwave component data, and the trained ANNs 
c a n be used as fast and accurate models for efficient high-level circuit and system 

csign [20 ,74 ,478-481] . On the other hand, space mapping is an advanced optimiza-
l 0 n concept, successfully used to achieve substantial computational speedup in other-

Wise expensive optimizations of microwave components and circuits [229,482-484] . 
cchniques combining ANNs and space mapping have also been developed for elec-

romagnetic modeling [478], nonlinear device modeling [230] and statistical device 
Modeling [485]. 

This paper explores further advances in the application of ANN and space map-
P l n g for modeling of nonlinear microwave devices. Nonlinear device modeling is 
a t l important area of microwave CAD, and many device models have been devel
oped [486, 487] , such as physics-based models, e.g., [488-490] , equivalent circuit 
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based models, e.g., [491^496] or table based models, e.g., [497]. With the continuous 
development of semiconductor device technologies, new devices constantly evolve-
Models that were developed to fit previous devices may not fit new devices well. There 
is an ongoing need for new models. The need for faster model development cycle also 
demands new CAD methods for modeling, so the task of model development becomes 
more efficient and systematic. 

Recently, a CAD method for nonlinear device modeling, called Neuro-Space map
ping (Neuro-SM) technique has been introduced [230,498]. It is a systematic com
putational method to address the situation where an existing device model cannot fit 
new device data well. The methods start from a known equivalent circuit model that is 
already a coarse approximation of the new device behavior. We refer to this existing 
equivalent circuit model as the coarse model. A generic method like ANN is then ap
plied to map or modify the voltage/current relationship in the coarse model to match 
that of the new device data. The final model, i.e., the Neuro-SM model, is a combi
nation of both the ANN mapping and the coarse model. The ANN part of the overall 
model is referred to as the mapping structure, and the existing equivalent circuit model 
as the knowledge that is integrated with the ANN. In this way we can "repair" ( i- e ' 
improve) an existing model by a CAD method such that the final model matches the 
new device much better. The specific mapping structure for nonlinear device modeling 
introduced in [230,498] was based on an input-mapping concept, which is a type, and 
the earliest type of space mapping originally formulated for EM optimization [229J-
There is no guarantee that the input-mapping structure is the best mapping structure 
for all device examples. For example, the input mapping may not be sufficient if the 
output of the fine model is beyond the output range of the coarse model. Fortunately* 
a variety of mapping methods have been developed in passive/EM modeling that can 
be adopted for nonlinear device modeling, such as space mapping [76,230,483-485]? 
difference mapping (or difference method) [74], output mapping [228], prior knoWl' 
edge input (PKI) method [228], and knowledge-based neural network involving hybrid 
mapping [74,499]. 

The overall efficiency of a general Neuro-space mapping model depends on the 

quality of the equivalent circuit model and the suitability of the mapping structure, m 
order to obtain optimal overall model accuracy it is important that the best combination 
of equivalent circuit model and mapping structure is used. Which model/mapping 
combination performs best is difficult to determine up-front since it depends on the 
data and the problem characteristics [483,499]. Thus, this problem must be solve" 
on a case-by-case basis, each time a new device is considered. However, there are 
many combinations of possible equivalent circuit models and mapping structures. It Is 

very expensive to fully exploit this rich combination due to the cumbersome manua 
process of selecting structural combinations and optimizing the model and mapping 
parameters. This also means that there is still a large potential for improvements in 
accuracy if the space of different combinations is searched more efficiently. This brings 
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us to the motivation of this paper. 
We present a new methodology for nonlinear device modeling that is not tied to 

a particular device, an empirical approximation, or a mapping structure. The paper 
describes an approach to explore the space of mapping structures by formulating the 
Neuro-SM structural optimization problem with an evolutionary optimization algo
rithm. To enrich optimization search space and extract maximum possible improve
ments in modeling with simpliest mapping function, we also break down the mapping 
structure into finer structural variables for optimization. For example, separate map
ping structures for voltage mapping, current mapping, transistor gate mapping, or drain 
mapping. In addition, since the efficiency of the mapping depends on the quality of the 
nonlinear equivalent circuit model we go one level deeper by decomposing the equiv
alent circuit models into their constituent internal branches and allow mixing of these 
branches across different model types. This further enriches the optimization search 
space, i.e., the different combinations of mapping structures and equivalent circuit 
models, allowing potentially superior models compared to traditional pure equivalent 
circuit models or hybrid models with predetermined mapping structures such as [230]. 
This also allows for simpler mapping functions which is desirable. In our implemen
tation of the optimization, the final solution (a model) from the optimization program 
l s a simple netlist representing the complete model structure, and values of parameters 
°f all the functions in the model. 

^•2 Evolutionary Knowledge-Based Modeling 

^•2.1 Motivation 

The starting point of our work is that the existing model cannot match the new de-
Vlce behavior. The existing equivalent circuit models, called coarse models, need to 
he modified and extended in order to accommodate for new device behavior. Manual 
modification of models is a trial and error process and hybrid methods have been devel
oped to help map the coarse model to the device data [76,228,230,483-485,499,500] . 

However, there are a variety of mapping methods and the optimal mapping choice 
l s typically not well defined since it depends mutually on the problem and the nonlinear 
equivalent circuit model (the better the nonlinear equivalent circuit model, the simpler 
the mapping structure). This mutual dependence cannot be solved in an a priori manner 
since there is no mathematical procedure that can be used as a guide. Nevertheless, for 
°ptimal accuracy of the overall model it is important that both the mapping and the 
Univalent circuit model are optimally complementary. 

The result is that the different combinations of mapping structures and nonlinear 
equivalent circuit models must be tried manually which is a cumbersome undertaking, 
this is even more true if one goes beyond homogeneous models but also optimizes the 
internal structure of the equivalent circuit models themselves (e.g., hybrids of different 
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equivalent circuits). The advantage of this is that it allows the mapping itself to he 
simpler. 

The result is a combinatorial explosion due to the cross-product of different map
ping methods and structural variations of each equivalent circuit model type. Navigat
ing this search space is very human intensive and can only be done for a limited set 
of possible solutions. Significant cost savings and potentially large gains in accuracy 
could be obtained if this search is automated and parallelized in an efficient way. 

A.2.2 Genetic Algorithms 

We propose the use of evolutionary search to tackle the aforementioned problem-
The evolutionary paradigm is well suited for optimization in large discrete search 
spaces and has already been applied successfully in many circuit generation prob
lems [501, 502]. In the context of this paper, an evolutionary algorithm starts from an 
initial population of mapping structures and nonlinear equivalent circuits (which may 
be randomly generated) and uses specific reproduction operators in order to generate 
new circuit models based on the previous population. Proper definition of the repr°' 
duction operators allows the algorithm to efficiently explore the large search space to 
quickly come to an optimal solution. 

The genetic algorithm is probably the most well known evolutionary algorithm 
and is used as an algorithm for global search, optimization being the most widely 
used application. The core algorithm, as introduced by Holland [314] is referred to 
as the Canonical Genetic Algorithm and is presented in pseudo code in the Appendix-
Genetic algorithms have found widespread use in many domains with applications in 
transportation [319], electronics [502], vehicle design [321], scheduling [322], data 
fitting [323], and many others. In particular, driven by the work by Koza et. al. [503J> 
the new field of evolvable hardware [501, 504, 505] has led to some very innovative 
applications of the evolutionary paradigm to electronic circuit design problems. 

An important advantage of evolutionary methods over classic optimizers such as 
Broyden—Fletcher— Goldfarb—Shanno or Simplex search [506] is that evolutionary meth
ods are well suited to structural topology optimization -while classic methods are more 
suitable to continuous optimization problems in a real valued space. An advantage 

over other direct search methods like Particle Swarm Optimization [507] is that the 
user can exercise fine control over the concrete representation and genetic operators 
used. This allows the genetic algorithm to be fine-tuned to the problem at hand, mak
ing the incorporation of problem specific knowledge, constraints, and requirements 
more convenient. 

A.2.3 Chromosomal Encoding of the Model Search Space 

The purpose of the genetic algorithm is to find the optimal mapping structure for an 
existing knowledge model. The associated topology of the equivalent circuit model, of 
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owledge model, can also be optimized automatically to explore the search space in 
order to come to an improved overall model . 

m order to make this possible we must first formulate a coding scheme to represent 
e different mappings and associated equivalent circuits. This coding scheme must be 
unction that uniquely translates a mapping structure/equivalent circuit model corn-

nation into a code the genetic algoritlim can work with. While traditionally a binary 
coding was employed, ample research has shown that a real valued, more problem 

peciric encoding can greatly increase search efficiency [317]. For this paper we take 
e building blocks of the code to be the different mapping types and the different 
ments of one or more existing equivalent circuit models. 
in the next subsection we first discuss the base equivalent circuit model employed 

his paper and how the different types of mapping structures are implemented around 
t he subsequent subsection will then discuss how the equivalent circuit model itself 

can be encoded and its topology optimized. 

•2.3.1 Mapping Structure Implementation 

is paper is concerned with modeling a transistor and we focus on the most difficult 
of the transistor modeling, the nonlinear intrinsic part [508]. Assuming that the 

rmsic elements are taken fixed and can be separately determined from ^-parameter 
asurements [508], we only consider modeling the intrinsic circuit. We use a base 
cuit model with three nodes for the intrinsic modeling of the transistor device, i.e., 

gate, the drain, and the source terminals, denoted by G, D, and S, respectively. 
e denote the branches connecting the three nodes by B = {GS, GD,DS}, with each 
anch containing one or more elements (e.g., diode, nonlinear capacitor, nonlinear 
ntrolled source, etc.). An example of such a circuit structure is shown in Fig. A. 1. 
is is an example of the coarse model part in the overall model . 

gure A. 1: Base circuit model example (the intrinsic circuit of a transistor) with three nodes 
(Gate, Drain, and Source). All branches, including the capacitors, are nonlinear-

elements in general. 

We now temporarily assume a fixed topology for the equivalent circuit model and 
scuss the different mapping structures and how they are implemented. With map-

P ng we mean that the gate and drain voltage signals of the device will not be applied 
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directly. Instead, they will be modified (mapped) and only then applied to the coarse 
model . Similarly, the gate and drain current signals can also be mapped . However, 
there are many different ways in which the behavior of the coarse model m a y be mis
aligned with the true device data: Ranging from a simple misal ignment easily cor
rected by a linear shift in the input space, to a highly nonlinear misal ignment requiring 
a complex correction operator in the output space. Depending on the nature of the 
misal ignment (simple, complex, in the input space or output space, etc.) a differen 
mapping method, or combinat ion of methods , will be required and it is not always 
obvious which mapping method is most suited. 

Fig. A.2 shows the base circuit model example from Fig. A. 1 extended with ele
ments that make the different mappings possible. A c o m m o n source implementation 
is considered here. The interpretation is as follows: given the gate and drain termi' 
nal voltage signals vg and vd as inputs, the gate and drain current signals is and id ° 
the model ing problem are solved from those of the equivalent circuit mode l (define" 
a s vgmap, vdmap, igmap, and idmap) through the application of input mapping, output map
ping, difference mapping, or any subset thereof. We now discuss each of these three 
possibilit ies in turn. 

a A i g [ AQ g T VS™P 

g 

Difference Output Input 
Mapping Mapping Mapping 

B a s e C i rcu i t M o d e l Input Output Difference 
Mapping Mapping Mapping 

Figure A. 2: Base circuit model from Fig. A.l extended with mappings (represented by 
controlled sources in the circuit form). All three mappings (input mapping, output 

mapping, and difference mapping) are shown on the figure, both on the gate termini 
and the drain terminal. 

Input Mapping In the input mapping method, the mapping function m a p s the inp° 
space of the original problem onto a coarse model input space [230] . The coarse mode 
is an existing equivalent circuit inodel that cannot represent a new device behavio 
accurately in the original input space. By applying input mapping , the coarse mode 
with mapped inputs can produce the outputs wi th improved accuracy [230] . Inp u 

space mapping is achieved by adding voltage controlled voltage sources that perform 
a mapping of v^ and vd onto vgmap and vdmap through 

S?nap = flMs{Vg,Vd) (A-l) 
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vdmap = fiMj (vg,vd) (A.2) 
e r e fiMg (•) and fiMdf) represent the input mapping equations for the gate and drain 

° tage signals, respectively. Input space mapping is most effective when only the 
Put of the coarse model needs to be realigned [499]. The simpler this realignment 

^ e., depending on the coarse model) the more straightforward the implementations 
JiMg(-) and//A/ r f(-). Thus, a poor choice for the coarse model will make construct-

g an accurate mapping function considerably more difficult. If no input mapping 
requested by the algorithm, an identity function is used, i.e., fiMg(yg,Vd) = vg and 

flH/(vg,vd) = vd. 

tput Mapping With output mapping, the appoximator learns the relationship be-
een the outputs of a prior knowledge model and the original problem. We use the 

nor Knowledge Input (PKI) formulation [228] of output mapping. Output mapping is 
Pphed on the output currents and input voltages of the equivalent circuit model using 

controlled current sources: 

i'g = foMs (v^, vd, igmap ) (A.3) 

i'd = foMd (vg, vd, idmap ) (A.4) 

where foMg{-) and foMd(•) represent the output mapping equations for the gate and 
in current signals, respectively. Hence, as opposed to input space mapping, output 

aPping is most effective when only the output of the coarse model needs to be re
i n e d [499]. Similarly, an optimal choice for foMg{-) and foMd{f) depends on the 

4 aLity of the coarse model. Again an identity mapping is used if no output mapping 
18 selected by the algorithm, i.e., fOMg{.) = iSmap a n d / W ) = idmap. 

"terence Mapping The mapped output currents from (A.3) and (A.4) can further 
corrected by applying difference mapping using controlled current and charge ele-

e n t s , in order to obtain the final output currents 

ig = i'g + fDMg (vg, vd) ( A - 5 ) 

*d = I'd + fDMd (Vg, Vd) (A.6) 

where 

fDMg = Aig(vg, vd) + AQg(vg, vd) (A.7) 

fDMd — Aid(vg, vd) + AQd(vg, Vd) (A.8) 
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In (A.7) and (A. 8), Aig (Aid) and AQg (AQd) represent the current and charge correc
tions for the gate (drain) terminal, and AQg and AQd are the t ime derivatives of the 
correction charges. fnMg(-) and fuMd{,-) represent the difference mapp ing equations 
and both are zero if no difference mapping exists. Difference mapping is most effec
tive if the difference between the coarse model and the true data follows a predictabl 
pattern [499]. 

There are many possible implementat ions for f1Mg (-), f/Md (•), foMg (•), foMd (') > JDMg 

and f'DMd{-), ranging from simple linear mappings to powerful ANN-based mapping 
[230 ,485] . As discussed in subsection A . 2 . 1 , the opt imal choice will depend on tn 
problem and available coarse mode l structures. 

A.2.3.2 Equivalent C i r c u i t E n c o d i n g and Solution Representat ion 

Recall from Fig. A. 1 that we assume a base circuit model with 3 nodes denoted by 
G, Z>, S and three connect ing branches B = {GS, GD,DS}. Let Eb>b^B be the discrete 
variable representing the type of e lement present in a branch (e.g., E = 1 
Capacitor, etc). In addition, since we wish to explore different circuit topologies 
allow multiple parallel branches for each of the 3 main intrinsic branches (not un 

Diode, E = 2 : 

we 
like 
llel the parallel augmentat ion used in [509]). Let p denote the number of such para 

branches . This means that a complete circuit wi th a m a x i m u m of p parallel branche 
for each main branch can be written as a set of three-tuples: 

{ (EGS\ EGDX , EDSx),..., (Ecsp, EGDP , EDSp)} 

This is illustrated graphically in Fig. A . 3 . As an example , the equivalent circuit m ° 

(A-9) 

del 

GSn GS-l DS< DSo 

Figure A.3: Generalized base circuit model with p parallel branches connecting the base 
circuit nodes G,D and S. 

i for 
shown in Fig. A. 1 can be expressed by taking p = 2 , two nonl inear capacitors 

EQSX and EGD2 •> two diodes for EGS2
 a n d EGD{ , a nonl inear source for EDSI •> a t l ° ' u S 

the respective formula for each element. 
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tJestdes different circuit topologies, we go beyond pure models where each element 
approximated by the same type of equivalent circuit model. We wish to allow a 

yorid equivalent circuit model where each element Ebr (b G B,r = l,..,p) may be 
Pproxmiated by a different equivalent circuit model type. Let M b e a discrete variable 

that represents the model type (e.g., M= 1: Curtice [491], M= 2: Materka [493], etc.). 
circuit representation then becomes: 

{((M,C)CS],(M,C)GD],MDSl),..., 

((M, C)GSp, (M, C)GDp, MDSp)} 

(A. 10) 

1 h the tuple (M,C)hr representing the element E in parallel branch r of main branch 
whose approximation is dictated by model type M Since we assume the use of 

ge controlled current sources for the DS branch therefore we can omit the element 
ypc parameter in the DS branch from the chromosome representation. 

finally, we come to the optimal choice of mapping structure which is applied to the 
r c u i t model as discussed so far. Let A' denote the type of mapping used (e.g., K = 1: 
Put mappings K = 2: output mapping, etc.) and let the subscripts G and D indicate if 
e mapping is applied on the gate terminal or the drain terminal. If a mapping is not 

PPhed, this is denoted by K = 0. Together, this results in the following final circuit 
representation in a matrix form: 

MGS2 EGSl 

Mt GSD EGSD 

MGDS EQD\ 

MGD2 EOD2 

M~GDp EGDP 

MDS] 

MDSl 

MDSn 

KG] KD\ 

KG2 KD2 

KG„ KDV 

(A. 11) 

e that this setup allows different mappings to be applied to the gate and drain sep-
e i y and allows multiple mapping types to occur concurrently. The only restriction 
at input mapping, output mapping, and difference mapping may only occur once 
ach mapping column (for example, applying output mapping twice on the drain 

mtnal is not allowed). Absence of a certain branch or mapping is indicated by zeros 
tie corresponding locations. A graphical representation of the matrix in ( A . l l ) is 

s hown in Fig. A . 4 . 

t he matrix in equation (A. 11) represents the chromosome of an individual, with 
' > K representing the different genes. In a real organism each gene has a number 

teles that can occupy each of the gene loci. The same is true here. In the concrete 

P mentation, e a c ^ OI^ ̂ e symbols M, C, K is represented by a number that indi-
s the model type, the element type, and the mapping type, respectively. Table A. 1 

W s t n e different alleles used for each gene. Thus, we have reduced the problem to 
oinatorial optimization, the total number of combinations being: 
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M ;M. 
GS, GS 1 ' GD., GD. ' D S i ; Q i ! °t 

I'M,,,, E„e ,M0„ E„ „ M ^ K !K , 
GS 2 G S 2 ! G D j GD 2 i D S 2 " G2 D j 

M„ !M„ to °vKs K. Dri 

y G 
Gate map 

Mapping 

I 
, ̂ J Gate • map 

I Mapping ) I T 

" G S j 

V 

4> 
LDrain h D 

I Mapping I 

1 
S 

Figure A.4: Graphical representation of encoding an equivalent circuit model andmapping 
structures as a matrix. A mapping type can only occur once in each mapping coturntt- J 

a branch or mapping is not present this is denoted by zeros at the corresponding 
locations. 

P 

1=1 

(NM-NE)+l-l 
1 

p 

1 

N±(N; 
1=0 v ' 

NK\ ( A 12) 

with NM, NE and Afc representing the number of different model types, elernen 
types, and mapping types, respectively. Thus each circuit generated by the geneti 
algorithm is encoded as a p-by-7 matrix. 

Model type (M) 
Element type (E) 
Mapping type (K) 

Chromosomal encoding 
1: Curtice, 2: Materka, 3: Chalmers 

1: Capacitor, 2: Diode 
1: Input mapping, 2: Output mapping 

3: Difference mapping 

Table A.l: Encoding table containing codes for each allele used in the chromosomal encoding-

An example of a knowledge circuit (without mapping structures) and its equivale 
representation in the matrix form is shown in Fig. A .5 . The circuit has a Chalmer 
capacitor and a Curtice diode in the GS branch and two Materka capacitors with di 
ferent nonlinear coefficients, a Curtice diode, and a Chalmers diode in the GD branc • 
A Materka source in the DS branch completes the circuit. Such topological mixing ° 
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erent equ iva len t c i rcui t m o d e l s a l lows for m o r e f r e e d o m a n d flexibil i ty to fit t he d e -

e behavior w i t h i m p r o v e d accu racy over t rad i t iona l h o m o g e n e o u s equ iva len t c i rcui t 

els and /or to p e r m i t a s i m p l e r m a p p i n g s t ruc ture . 

3 1;3 2; 2 o o 
1 2,12 liO'OO 
0 0,12 li'O'OO 
o o i 2:0,0 0 

rH>ei\ 

gure A. 5: Example of encoding a circuit topology into a chromosome using the proposed 
encoding from (A. 11). The numbers on the circuit represent the model type used (see 

Table A.l). The circuit has a Chalmers capacitor and a Curtice diode in the GS branch 
and two Materka capacitors with different nonlinear coefficients, a Curtice diode, and a 

Chalmers diode in the GD branch. A Materka source in the DS branch completes the 
circuit. Such hybrid of different model types allows flexibility of mapping and expands 

the search space for improved accuracy. 

A n e x a m p l e wi th expl ic i t m a p p i n g s t ruc tures is dep ic t ed in F ig . A . 6 . In this e x a m -
m p u t m a p p i n g a n d o u t p u t m a p p i n g a re app l i ed to the ga te t e r m i n a l a n d di f ference 

t a p p i n g i s a p p i j e f j to the d ra in t e rmina l . 

^•2.4 Genetic Operators 

ce an e n c o d i n g s c h e m e h a s b e e n defined, it b e c o m e s p o s s i b l e to define the gene t i c 
Perators . Reca l l f rom sec t ion A . 2 . 2 tha t t he gene t i c a lgo r i t hm starts f rom a p o p u l a t i o n 

ransis tor inode l s . B a s e d on this p o p u l a t i o n ( n a m e l y the pa ren t s ) t he gene t i c a l g o -
111 gene ra tes a n e w p o p u l a t i o n ( n a m e l y t h e ch i ld ren) o f t rans i s tor m o d e l s b a s e d on 

° genet ic ope ra to r s : m u t a t i o n and crossover . W h i c h m o d e l s are se lected as p a r e n t s 

oe t c rmincd b y a se lec t ion funct ion. T h e se lec t ion funct ion wi l l t ake in to a c c o u n t the 
ness (def ined as the m o d e l accuracy in t e r m s o f t r a in ing error , de sc r ibed in sec t ion 
•2.5) o f e a c h t rans is tor m o d e l so tha t m o d e l s w i t h a be t t e r a c c u r a c y (or l ower t r a in ing 

° r ) have a h i g h e r p robab i l i t y o f b e i n g se lec ted as pa ren t s . T h u s b y i tera t ively app ly -
g the gene t i c ope ra to r s o n a s ta r t ing p o p u l a t i o n , se lec t ion s h o u l d dr ive t h e p o p u l a t i o n 
the op t ima l so lu t ion . So an evo lu t ionary a lgo r i t hm is c o m p l e t e l y d e t e r m i n e d b y its 
cod ing a n d gene t i c opera to r s . T h e nex t subsec t ions fo rmula t e t h e gene t i c ope ra to r s 

d e f i n e d in this w o r k . 
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1 1:0 0:2 1;3: 
3 212 i-0:;2;0: 
OOOQ;0;:O;O| 
0 o;o o:o:;o'o: 

Figure A. 6: Circuit encoding example with mapping structures. Input and output mappings 
applied to the gate terminal, while difference mapping is applied to the drain termirt' 

are-
al 

A.2.4.1 Mutation 

The purpose of the mutation operator is to ensure that every region of the search sp#c 

can be reached. It should therefore contain sufficient randomness to make this possibi 
We employ a meta-mutation operator that selects one or more simple mutation opera 

tors according to various probabilities. L e t X be the matrix in (A. l 1) which represen 
a particular encoded circuit. The simple mutation operators are formulated as follow 

• Delete a random row: a row r (1 < r < p) is chosen randomly from X a r i 

replaced by a row of zeroes. This has the effect of deleting one parallel branc 
from each of the three main circuit branches (GD,GS,DS). This operator 
illustrated in Fig. A.7. 

• Replace a random row: a row r is chosen randomly from X and replaced *>J 
a randomly generated vector [MGSr,EGSrMGDr,EGDr,MDS,.,KGr,KDr}. This Wi 
add or replace an existing mapping structure or parallel branch. 

• Rotate the model types: the non-zero model types \MGsr,MGrrr,Mos,] of eac 

row r of X axe permuted one clockwise cycle resulting in \Mr)S,-,MGs,.-,$d~GD> 
For example, if this operator is applied to the circuit in Fig. A.5 the GSht&fy 
will contain a Materka capacitor (type inherited from the original Materka souTc 

in the DS branch) and Materka diode (from the Materka capacitor in the secon 
parallel branch of GD) instead of a Chalmers capacitor and Curtice diode. 

• Rotate the element types: the same as the previous operator only now applied 
the element types in the GS and GD branches. 

ch 
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Swap the mapping structures: the mapping structures which are applied to the 
dram terminal are switched to the gate terminal, and vice versa. Thus KD,. swaps 
places with KGr for each row r of X. An illustration is given in Fig. A.8. First 
input mapping and output mapping were applied on the gate terminal and dif
ference mapping on the drain terminal. After applying the mutation operator the 
situation is reversed. 

Delete a random branch: a row r and branch b from X is chosen randomly, 
uniquely identifying a particular parallel branch, i.e., a tuple (M/,,. ,£),,.). This 
branch is then deleted from the circuit. This procedure is repeated three times. 

Replace a random branch: the same as the previous operator instead now the 
randomly selected branch is replaced by a randomly generated one. If the se
lected branch was empty (consisted of zeroes) this amounts to adding a new 
Parallel branch. This is repeated twice. 

3 132200 
1000 -9-9-£ 11 

002 1000 
00 12000 

3132200] 
0000000 
002 1000 
00 1200 0 

lgure A.7: Example of applying the "Delete a random row" mutation operator, resulting in 
eliminating the diode in the GS branch and the capacitor in the GD branch. 

l c h subset of operators is applied on a given individual will depend on the random 
mbers generated uniformly. The advantage of this approach is that it still allows for 

r£e jumps in the search space without completely destroying the individual in one 
e P (as would be the case if one single, complex mutation operator was used). Note 
at the collection of simple operators edge on the conservative side when it comes to 
rcuit complexity. Three of the operators leave the size of the circuit unchanged, two 

of the operators remove branches, while two potentially add new elements. This helps 
sure that the genetic algorithm does not needlessly generate overly complex circuits. 
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1100213| 
|3221020| 
0000000 

(J) 0 0 0 0 0 0_ 

1 1 0 0 2 3 1, 
1322 10021 
0000000 
0 0 0 0 O 0 0J 

Figure A. 8: Example of applying the "Swap the mapping structures" mutation operator. The 

mappings that applied to the gate terminal are transferred to the drain terminal an 
vice versa. In the figure this means that first input mapping and output mapping w& 
applied on the gate and difference mapping on the drain. After applying the mutatto 

operator the situation is reversed. 

Pk..1A.1 Crossover 

The purpose of the crossover operator is to recombine genetic information from W 
parents in order to produce one or more offspring. It is important to find the right ba 
ance between exploration and exploitation in the recombination operator. The offspr1"^ 
should contain recognizable genetic information from both parents. If the offspring 
too similar to either one of the parents, the genetic algorithm may concentrate too mu 

on exploitation and less on exploration. If the offspring contains too much randomne 
the converse is true. 

We again use a combination of different simple recombination operators that a 
on two parents X\ and X2, both encoded using (A. 11): 

• Swap the models: the model type sub-matrix otXi, 

Mxi = 

MGsl 

MGs2 

MGDl 

MGDo 

MDSl 

MDs2 

MGS„ MGDn MDs,} 

(A 13) 

replaces the equivalent sub-matrix Mx2 of ^2 and vice versa. To prevent o 
phaned model types only non-zero elements are replaced. As an example, tn 
means a parent circuit which contains a mixture of Materka and Curtice elernen 

but 
rent 

in its GD branch will result in a child circuit with the exact same elements 
now approximated by the Chalmers equations (if we assume the other pa] 

only has Chalmers elements in its GD branch). 

Swap the elements: this operation is equivalent to the previous operator exceP 
this time only element type information is exchanged. The relevant sub-matr 
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Ex] 2 is then 

^X\.2 1,2 

EGSX 
EGS2 

EGDX 

EGD2 (A. 14) 

EGDP EGDP J 

Thus now the element types are changed while the model types remain fixed. 
For example, application to a circuit with two Materka diodes in a certain branch 
may result in a circuit with two Materka capacitors in that branch. 

Swap the mapping structures: analogous to the previous operators the mapping 
structure sub-matrix Kxx 2 is exchanged 

KX\i = 

KGX 

KG2 KD2 

KGP KDP J 

(A.15) 

As an example, by applying this operator, the mapping structures that surrounded 
the equivalent circuit model of X\ are transferred to the equivalent circuit of Xi-
Likewise, the mapping structures that surrounded the equivalent circuit of Xi are 
transferred to the equivalent circuit of X\. The mapping information is effec
tively exchanged leading to two possible offspring. If neither parent contains a 
mapping then this operator falls back to swapping the models. 

One-point row crossover: classic one-point-crossover is performed on the matrix 
rows. A row r is selected randomly and an offspring is generated by taking rows 
1 to r — 1 from X\ together with rows r to p from Xz- A second offspring can be 
generated by reversing the roles of X\ and X2. In circuit terms this means that 
the outer p — r parallel branches of the parent circuits are exchanged in order to 
generate two offspring. 

Exchange a branch: a branch h G {GS,GD,DS} is chosen randomly and ex
changed between both parent circuits with all attached parallel branches. 

However, in contrast to the mutation operator, only a single recombination operator 
an be active at a time. Fig. A.9 illustrates the application of the branch exchange 
Perator (only one of the two possible children is shown). 

•2.4.3 Repair function 

mally5 the reader may have noted that without further modifications, the algorithm 
described so far may generate invalid circuits. Therefore at the end of each genetic 

Perator an extra check on the circuit topology is perfonned, and the individual is 
Paired if necessary. For example, if the circuit is not closed, a random branch is 

ad<ied to close the circuit. 
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3 1J3 2S2 0 0 
1 2 ; 2 1 J 0 0 0 
0 0 , 2 l i 0 0 0 
0 Oil 210 0 0 | 

Parent 1 

1 1 0 6 2 1 3 
3 2 ; 2 l ! 0 2 0 
OOlQOiOOO 
0 0.0 d O O 0 

Offspring 

Parent 2 
1 

1 113 2 2 1 3 
3 2,'2 lj' 0 2 0 
0 0.'2 X 0 O 0 
O 0''i ZOO 0 

Figure A. 9: Example of applying the "Exchange a branch" crossover operator. In this case 
GD branch is randomly chosen and exchanged between the two parents (including 

the 
all 

parallel branches). Only one of the two possible children is shown in the figure: we 

child which inherits everything form the parent on the right, except the GD branch, 
which it inherits from the parent on the left. This is equivalent to exchanging the 2 

and 3 columns in the matrix encoding. 

A.2.5 Fitness Function 
A . 2 . 5 . 1 D e c o d i n g a s o l u t i o n m a t r i x i n t o a c i r c u i t net l i s t 

T h e f i tness func t ion is t h e c o r e o f t h e g e n e t i c a l g o r i t h m . It m a p s a n i n d i v i d u a l ffon1 

t h e p o p u l a t i o n o n t o a s ca l a r s c o r e w h i c h r e p r e s e n t s t h e d i f fe rence b e t w e e n t h e m o d e 
a n d t h e t r ans i s to r d e v i c e da t a . A l o w e r f i tness i m p l i e s a m o r e a c c u r a t e c i rcu i t model-
In d o i n g so , it m u s t d e c o d e t h e m a t r i x r e p r e s e n t i n g t h e i n d i v i d u a l in to a n equivalen 
c i rcu i t m o d e l . To m a k e th i s p o s s i b l e , t h e fitness func t ion u s e s a n e x t e n s i b l e Markup 
L a n g u a g e ( X M L ) [ 5 1 0 ] file t ha t c o n t a i n s t h e a p p r o x i m a t i o n e q u a t i o n s ( in a ne t l i s t cort1' 
p a t i b l e f o r m a t ) for e a c h p o s s i b l e e l e m e n t t h a t c a n o c c u r in t h e c i rcui t . 

F i g . A . 10 s h o w s a n e x a m p l e o f t w o e l e m e n t s t h e file m a y c o n t a i n . T h e first e l emen 
c o n t a i n s t h e e q u a t i o n o f a c a p a c i t o r ( w h i c h o c c u r s in t h e GS b r a n c h ) a p p r o x i m a t e d b v 

t h e C h a l m e r s m o d e l . T h e s e c o n d e l e m e n t s h o w n in F i g . A . 10 h o l d s t h e e q u a t i o n s for * 
l i nea r d i f fe rence m a p p i n g o n t h e g a t e t e r m i n a l . T h u s , as is c l ea r f r om t h e figure, X M ^ 
is a m a r k u p l a n g u a g e ( i .e . , it a n n o t a t e s ex i s t i ng da t a ) t ha t p e r m i t s s t a n d a r d i z e d r ep re ' 
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sentation of s tructured data. T h e choice for X M L was natural since it is the defacto 
standard for s tructured data representa t ion, and suppor t for it is built-in to virtually 
every p rog ramming language and deve lopment envi romnent . It also al lows for easy 
extension of this approach to new equivalent circuit mode l s and m a p p i n g types in the 
future. 
i ~ — i 

c/NetlistElements> 

<Element model="Chalmers" branch="GS" type="Capacitor"> 
<SDD>SDD:SDD2P3 Gc1 Sc1 Del Sc1 l[1,1]=Qgs(_v1, _v2) ![2,0]=0</SDD> 
<Parameters> 

P11 = 0.423083438 opt{ unconst }; 
P21 =0.012810991 opt{ unconst}; 
CgsO = 6.75906440e-13 opt{ unconst}; 

</Parameters> 
<Functions> „ „,,,.... 

Qgs(v1, v2) = CgsO*(P11*Vl+ln(cosh(P11*v1»)*(1+tanh(P21*v2))/P11 
</Functions> 

</Element> 

<Mapping terminal="6ate" type="D/ffiMapp/ng"> 
<Parameters> 

agO = 0 opt{ +/- 5 }; 
ag1 =0op t { + / -5} ; 
ag2 = 0opt{ +/- 5 }; 
bg0 = 0opt{ + / -5 } ; 
bg1 = 0 opt{ +/- 5 }; 
bg2 = 0opt{ + / -5} ; 

</Parameters> 

<Functions> 
•g(Vg, Vd) = agO+ag1*Vg+ag2*Vd; 
Qg(Vg, Vd) = bgO+bg1*Vg+bg2*Vd; 

</Functions> 
</Mapping> 

</NetlistElements> 

Figure A. 10: Example XML fragment for storing the implementation of each of the elements 
that may appear in a circuit. The approximation for a circuit element/mapping is split 
into different parts: the actual equation (the <Functions> tag), where the equation is 
used in the circuit netlist (<8DT» tag), and the parameters that occur in the equation 

(<Parametcrs> tag). The opt{...} specifiers indicate to the circuit simulator that will 
process this netlist that those parameters are optimizable within the given bounds. 

Fur thermore , once data information is stored in X M L format it b e c o m e s very easy 
t o manipula te and extend. In part icular query ing the X M L data for specific information 
c a n be easily done . This is m a d e poss ible th rough the X M L Path Language (XPath) 
[ 5 11] . For example , if one wan ted to uniquely retrieve the first e lement listed in Fig. 
A - 1 0 , one w o u l d per form the fol lowing XPa th query: 

/ /E l ement [@mode l= 'Chalmers'} and [@branch= 'GS"] and [@type= 'Capacitor'] 
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Thus a matrix that represents an encoded circuit based on (A. 11) can be easily mapped 
onto a series of XPath calls that collect the necessary elements that make-up the circuit-
These elements are then combined and merged into a base template netlist in order to 
arrive at the final netlist that fully implements the circuit. This netlist can then be 
executed by the circuit simulator. 

A.2.5.2 Mapping a circuit to a fitness value 

The next step is to produce a scalar fitness value for a given netlist. Let A^bea netlis 
that implements a particular circuit. N is the result of decoding an encoded matrix 
X according to the procedure described above. The accuracy of N as a model of the 
transistor in question, is calculated based on the training data, such as the DC and bias-
dependent 5-parameter data. Let this data be denoted by y and the number of data 
samples by n. In addition, the empirical equations in each branch of the equivalen 
circuit model contain a number of parameters that must be set (e.g., the P\\ and "21 
parameters from Fig. A. 10). Let QE denote the values of these parameters and let 
NQE be the circuit represented by netlist Â  whose circuit parameters have been set to 
QE- Let g(-) be a function that represents the execution of the netlist by the circuit 
simulator, y = %(NQE) then denotes the prediction of the training data by NQE . In order 
to achieve maximum accuracy, QE must be optimized to an optimal value 0 | . This can 
be performed by a circuit simulator (in this paper we use Agilent Advanced Design 
System (ADS) [512]). The optimization routines present in the circuit simulator will 
optimize BE in order to accurately fit the empirical equivalent circuit model to the 
training data. Denote this optimized circuit model by NQ* with 

0 | = argmin^(y,g(A^ % ) ) (A. 16) 

The score returned by the function h(-), and minimized by the circuit simulator, is a 

weighted sum (using weights w, with | |w| [ = 1) of the absolute error on the DC and the 
real and imaginary parts of the iS-parameters, i.e. 

A(y,y) = ! > < • -ASE(y0ny0i) (A. 17) 
i=l 

Where y0. a n d j ^ represent the true and predicted values of each output, i.e., the dram 
current Id, and the real and imaginary ^-parameters (o,-,6; G{Id ,real(S\\), imag(S\\), 
real(S\2),imag(S\2),real (S2\)fmag(S2\),real (S22),imag(S22)}). The Average Scaled 
Error (ASE) between y0j &ndy~0l is defined as 

n £- ; I max(y0 .) - mm(y0j) \ 

where i, i = 1,2, . . . ,9 denotes the index of outputs, and k, k = 1,2, ...,n denotes the 
index of the data samples. 
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Note that so far we have only discussed the optimization of the parameters in the 
equivalent circuit models themselves. If a mapping structure is present in an individ
ual solution the parameters of that mapping (denoted by Qjf) need to be optimized as 
well (e.g., the ago, ...,bgo parameters from Fig. A. 10). However, the effective use of 
mapping structures requires that the circuit without mapping is already of reasonable 
quality [483]. Therefore, if a solution contains one or more mapping structures, two 
optimizations are performed. First the circuit is optimized over QE without the map
ping structure in order to find NQ* as in (A. 16). Then, for the fixed value of Qg an 
optimization is performed over QM to find the optimal set of mapping parameters 6^: 

0*f= argmin/2(y,g(A/{0*)%/})) (A.19) 

Let N{Q* G* | be the netlist N whose parameters are set to these optimal values. The 

final fitness value returned for a given netlist N is thus 

fitness(N) = h(y, g(A^,%})) (A.20) 

The full search by the genetic algorithm in order to find the optimal circuit topology 

with optimal mapping structure N* can then be written as 

JV* = argmin/Vrne^AO (A.21) 

This whole process is illustrated graphically in in Fig. A. 11. 

A.2.5.3 Parallel execution of circuit simulations 

The repeated optimization of each solution generated by the genetic algorithm can be 
expected to be computationally expensive. Luckily, a major advantage of evolution
ary algorithms is that they naturally allow for parallelization. The parallel computing 
model is Single-Process-Multiple-Data thus the fitness of each circuit in the popula
tion can be calculated independently on different CPU's. Thus the fitness function is 
implemented so that multiple circuit simulator instances can be run in parallel, each 
simulating a particular circuit of the population. 

In addition a fitness cache is used to prevent running the same simulations twice 
(through selection and elitism the population may contain duplicates), reducing the 
running time even further. This can be done since the simulations are deterministic. 

A.3 Examples 

A.3.1 Evolutionary Modeling of a GaAs MESFET 

This example illustrates the proposed technique on a large-signal FET model trained 

with both DC and bias-dependent S-parameter data. The fine device data is gener-
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Figure A.l 1: Flowchart for the evolution of optimal knowledge-based models. 

ated using an ADS internal GaAs FET model [230,492] , The data is available at 20 
frequencies (1-20 GHz) and 125 biases (Vg G [ -1 ,0 ] V, Vd G [0.2,5] V). 

The equivalent circuit models used as building blocks for the genetic algorithm 
arc the Curtice model [491], Materka model [493], and the Chalmers model [494]. 
The mapping structures included are input mapping, output mapping, and difference 
mapping. For this paper we build upon the neuro-space mapping approach described in 
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[230] and [485]. However, now the focus is on type selection of the mapping structure 
while at the same time achieving best possible quality of the equivalent circuit. This 
is made possible by mixing model types and performing circuit topology optimization. 
We wish to keep the mapping structure simple to make the model more efficient and 
robust. For this reason we use a linear ANN for fjM and foM which is a simpler version 
of the ANN-based mapping used in [230]. Of course a nonlinear ANN-based mapping 
can still be included if necessary, there is no inherent limitation in the methodology, it 
will only improve the results. 

The maximum number of parallel branches (p) was set to 4. If we then calculate 
the number of possible circuits (i.e., the size of the search space) according to (A. 12) 
we see that this is more than 9.50 x 107. Far too large to explore manually. 

All tests were run on a Matlab 7.8 R2009a platform L513] utilizing ADS 2006 [512] 
and the Matlab Genetic Algorithm & Direct Search, and parallel computing toolboxes. 
Simulations were run on a Quad Core Intel machine with 2GB main memory running 
Ubuntu Linux 8.10. Using the local scheduler from the parallel computing toolbox, 
this allowed for running 4 ADS simulations in parallel. If also the distributed scheduler 
is available, the implementation can also seamlessly run on a large cluster or grid of 
machines, without requiring any modifications to the code. 

During the execution of the genetic algorithm, ADS was configured to perform 
10 optimization iterations using the standard gradient-based method per circuit fitness 
evaluation. The time for one fitness evaluation is roughly 180 seconds on average for 
an individual with no knowledge and double that if one or more mapping structures 
are present. The initial values for each of model parameters were set to good, sensible 
values. The final solution was optimized for an additional 200 iterations. If ADS failed 
to converge during the model parameter optimization a score of 1000 was assigned to 
the individual causing the failure. If the failure occurred during the knowledge opti
mization the score of the individual without knowledge is returned. The population 
size was set to 20, the maximum number of generations to 100, the crossover proba
bility to 0.8, and 3 elite individuals were used. The initial population consists of a pure 
equivalent circuit model of each type (Curtice, Chalmers, Materka) with/? = 2 and ran
domly generated circuits, also with/? = 2. The selection function utilized is Stochastic 
Universal Sampling [317]. Once the evolution has terminated, we record the Average 
Scaled Error and Maximum Absolute Error (MAE) for the best solution found. Both 
error metrics are calculated between the device data and the predicted model response 
over the DC and ^-parameter responses. The MAE between the true values y and the 
predicted values y is defined as 

A £ 4 # ( y , y ) = m a x ( | y - y | ) (A.22) 

For the MESFET problem the final solution and two intermediate solutions gener
ated by the genetic algorithm are shown in Fig. A. 12. The best solution achieved by 
the genetic algorithm is a hybrid model that mixes the Curtice and Chalmers models 
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(c) Final solution after 100 generations (fitness = 0.001) 

Figure A. 12: Genetic Algorithm generated solutions for the MESFET example. 

with suitable mapping structures: 

• Mapping: Input mapping on the gate terminal and drain terminal 

• GS branch: Curtice Diode, Chalmers Capacitor 

• GD branch: Curtice Diode, Chalmers Capacitor, Chalmers Capacitor 

• DS branch: Chalmers Source, Chalmers Source, Curtice Source 
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Figure A. 13: S-parameter plot for (Vg, Vd) G { ( - 1 , 0 ) , (0.2,5) } for the MESFET example. 

Figure A. 14: Comparison of the proposed evolutionary modeling method with pure models on 
the MESFET modeling problem (Average Scaled Error). A lower fitness means that the 

overall error of DC and S-parameters is lower and that the model is more accurate. 
The solution from the proposed method is a hybrid model with mappings and gives the 

best accuracy overall. 

Note that we have duplicate model elements in the GD and DS branches. Although 

these elements have the same type, their parameters are different (due to the optimiza-
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Figure A. 15: Comparison of the proposed evolutionary modeling method with pure models on 
the MESFET modeling problem (Maximum Absolute Error). A lower fitness value 

means an overall more accurate model. The solution from the proposed method, which 
is a hybrid model with mappings, gives the best accuracy. 

tion) thus their behavior is not the same. 
For purposes of comparison the data was also modeled using pure forms of each of 

the different equivalent circuit model types. With pure models mean equivalent circuit 
models whose implementing equations all derive from the same model type and who 
have at most one mapping type applied (e.g., the standard Chalmers model with input 
mapping on both gate and drain). Fig. A. 13 shows a plot of the 5-parameters at 2 
specific bias values for the genetic algorithm solution and two other models. From the 
figure it can be observed that a pure Materka model with input mapping performs better 
than a pure Curtice model. A pure Chalmers model with output mapping performs even 
better. 

Fig. A. 14 shows how the evolved solution compares to each of the pure models (the 
exact numbers can be found in Table A.2). As can be seen from Fig. A. 14, the circuit 
generated by the genetic algorithm is the best solution (lowest fitness) over all other 
types of models under test. Regarding the average error it performs best on DC, S\2, 521 
and gives the same performance as the best pure model on 522- The lesser performance 
on S\ i turns out to be due to a lower accuracy on the real part of S\ \ that gets magnified 
when calculating the Average Scaled Error of the magnitude (the generated solution 
is the best solution of the imaginary component). Fig. A. 14 shows the accuracy in 
terms of average error. Worst case performance is shown in Fig. A. 15 and the general 
tendency is the same. The solution found by the genetic algorithm performs equal to 
(ZX7,S22) o r better than (Sii,Si2,521) any of the pure models. Especially for 52] the 
worst case accuracy of the proposed solution is significantly better. 
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__Solution of Proposed Method 
Pure Curtice 

_J*ure Curtice + Input Mapping 
Pure Curtice + Output Mapping 

Pure Curtice + Diff. Mapping 
Pure Materka 

Pure Materka + Input Mapping 
Pure Materka + Output Mapping 

Pure Materka + Diff. Mapping 
Pure Chalmers 

Pure Chalmers + Input Mapping 
Pure Chalmers + Output Mapping 
Pure Chalmers + Diff. Mapping 

Fitness 
0.0019 
0.0422 
0.0159 
0.0244 
0.0419 
0.0261 
0.0205 
0.0235 
0.0285 
0.0040 
0.0039 
0.0061 
0.0059 

Average Scaled Error (ASE) 
D C 

0.0040 
0.0231 
0.0087 
0.0200 
0.0245 
0.0190 
0.0195 
0.0202 
0.0206 
0.0070 
0.0062 
0.0071 
0.0073 

|S11| 
0.1133 
0.0941 
0.2958 
0.1838 
0.2785 
0.0845 
0.2315 
0.2012 
0.2512 
0.0410 
0.2379 
0.1886 
0.2199 

|S12| 
0.0099 
0.0471 
0.0733 
0.0554 
0.0438 
0.0550 
0.0637 
0.0600 
0.0548 
0.0401 
0.0400 
0.0408 
0.0413 

|S21| 
0.0055 
0.0300 
0.0144 
0.0191 
0.0294 
0.0196 
0.0149 
0.0189 
0.0200 
0.0136 
0.0133 
0.0129 
0.0151 

|S22| 
0.0168 
0.0926 
0.0547 
0.0763 
0.0777 
0.0661 
0.0660 
0.0863 
0.0672 
0.0212 
0.0151 
0.0321 
0.0255 

Solution of Proposed Method 
Pure Curtice 

Pure Curtice + Input Mapping 
Pure Curtice + Output Mapping 

Pure Curtice + Diff. Mapping 
Pure Materka 

Pure Materka + Input Mapping 
Pure Materka + Output Mapping 

Pure Materka + Diff. Mapping 
Pure Chalmers 

Pure Chalmers + Input Mapping 
Pure Chalmers 4- Output Mapping 

Pure Chalmers + Diff. Mapping 

Fitness 
0.0019 
0.0422 
0.0159 
0.0244 
0.0419 
0.0261 
0.0205 
0.0235 
0.0285 
0.0040 
0.0039 
0.0061 
0.0059 

Maximum Absolute Error (MAE) 
D C 

0.0043 
0.0132 
0.0055 
0.0090 
0.0132 
0.0116 
0.0100 
0.0105 
0.0139 
0.0027 
0.0044 
0.0034 
0.0044 

|S11| 
0.0891 
0.1028 
0.1733 
0.1241 
0.1147 
0.1483 
0.1678 
0.1555 
0.1510 
0.1362 
0.1631 
0.2208 
0.2362 

|S12| 
0.0087 
0.0323 
0.0448 
0.0294 
0.0298 
0.0557 
0.0519 
0.0468 
0.0533 
0.0332 
0.0327 
0.0275 
0.0324 

|S21| 
t.2154 
2.9773 
1.6263 
3.0194 
3.1051 
2.9645 
2.3200 
3.4738 
3.7128 
1.8802 
1.9553 
2.3055 
2.4523 

|S22| 
0.1583 
0.5257 
0.2616 
0.4360 
0.5182 
0.5163 
0.4023 
0.4683 
0.5077 
0.1494 
0.1480 
0.1995 
0.2176 

Table A.2: Comparison of the proposed evolutionary modeling method with pure models on the 
MESFET modeling problem. A lower fitness values means an overall more accurate 
model. The solution from the proposed method is a hybrid model with mappings and 

gives the best accuracy overall. 

A.3.2 Evolutionary Modeling of a H E M T Device 

The High Electron Mobility Transistor (HEMT) device is important in high frequency 
circuit design. In this example, the proposed technique is used to learn physics-based 
data of a HEMT device [230], with the training data (DC and bias dependent S-
parameter data) generated from a physics-based device simulator, MINIMOS [514], 
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by solving the device Poisson equations. The data is available at 40 frequencies (1-
40GHz) and 125 biases (Vg G [ - 5 , - 1 ] V, Vd e [0,3] V). 
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Figure A. 16: Physical structure of a HEMT device used for generating fine data in the 
MINIMOSphysics based device simulator. 

The HEMT structure used in setting up the physics-based simulator is shown it1 

Fig. A. 16. Since this is a more complex modeling problem we also add the necessary 
extrinsic components, though they remain fixed throughout the evolution. The same 
configuration (chomosomal encoding, genetic algorithm settings, ADS settings) as the 
first example is used. 

The final solution and two intermediate solutions found by the genetic algorithm 
are depicted in Fig. A. 17. The final solution is a hybrid model with mapping and is 
made up of the following elements: 

• Mapping: Input mapping on the gate, input mapping and output mapping on the 
drain 

• GS branch: Chalmers Capacitor, Curtice Capacitor 

• GD branch: Materka Diode, Curtice Diode 

• DS branch: Materka Source, Materka Source 

The 5-parameter plot for this problem is shown in Fig. A. 18. The genetic algorithm 
generated solution shows clear improvement over the other pure equivalent circuit 
models. Figures A. 19 and A.20 show how the accuracy compares with each of the 
pure models and models with pre-determined knowledge. The exact numbers can be 
found in Table A.3 . Again we see that the genetic algorithm solution compares favor
ably to the other pure models, both in worst case error and in average error. From Fig-
A. 19 it is interesting to note that eventhough pure Curtice and pure Materka models 
have high errors on S\\, the solution generated by the genetic algorithm performs much 
better while consisting mostly of Materka and Curtice elements. This is a clear exam
ple of how mixing model types can improve accuracy. For the other components the 
evolved solution is competitive with a Chalmers-based model, with the former having 
an overall advantage (lower fitness) due to the improved worst case behavior. 
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Figure A. 17: Genetic algorithm generated solutions for the HEMT example. 

A.4 Conclusion and Future Work 

We address the problem when existing empirical models have difficulty fitting new 
devices well. Previous research in this direction has shown that hybrid methods that 
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Figure A. 18: S-parameter plot for (Vg,Vd) G { ( - 0 . 4 , 0 . 1 ) , ( - 0 . 2 , 3 ) } for the HEMT example-
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Figure A. 19: Comparison of the proposed evolutionary modeling method with pure models on 
the HEMT modeling problem (Average Scaled Error). A lower fitness value means art 

overall more accurate model. The solution from the proposed method is a hybrid model 
with mappings and gives the best accuracy overall. 

augment equivalent circuit niodels with mapping structures can deliver promising re

sults with better generalization. However, determining the optimal combination of 

mapping structure and equivalent circuit model remains a user intensive process. 
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I Hybrid Solution by Proposed Method (left most bar) 
I Pure Curtice 
I Pure Curtice + Input Mapping 
I Pure Curtice •+- Output Mapping 
I Pure Curtice + Diff Mapping 
I Pure Materka 
B Pure Materka + Input Mapping 
D Pure Materka + Output Mapping 
3 Pure Materka + Diff Mapping 
• Pure Chalmers 
I Pure Chalmers + Input Mapping 
| Pure Chalmers + Output Mapping 
I Pure Chalmers + Diff Mapping (right most bar) 

.mil. . . . 
Figure A. 20: Comparison of the proposed evolutionary modeling method with pure models on 

the HEMT modeling problem (Maximum Absolute Error). A lower fitness value means 
an overall more accurate model. The solution from the proposed method, which is a 

hybrid model with mappings, gives the best accuracy. 

In this paper we have presented an evolutionary approach to knowledge-based mod
eling of microwave devices that tackles this. Good results were demonstrated on two 
modeling problems. Through the use of a genetic algorithm, the search for the optimal 
hybrid combination can be performed more efficiently allowing for potentially large 
gains in accuracy and performance. 

A disadvantage of being based on evolutionary algorithms is that results are not 
deterministic. However, a strength of this approach is that, since the initial population 
of the genetic algorithm can be seeded with the existing models, for a particular new 
device the solution produced by the evolutionary process can be guaranteed to be at 
least as good as what is currently available. Though in the majority of cases, the 
generated solution will be superior. A second advantage of evolutionary search is that 
it runs fully autonomously. Its applicability is limited only by the available computing 
power (which has currently been commoditized due to the rise of multi-core CPUs, 
clusters, grids and clouds). Our algorithm has taken advantage of this feature and thus 
naturally scales with the increasing computing power that is made available. 

Naturally room remains for many extensions. The first is to extend the base cir
cuit model to a more general structure containing more nodes. This would allow for 
more accurate results for more complicated devices. A second natural extension is to 
extend the possible mapping structures to also include more general ANN-based or 
other types of mappings. Specifically the Neuro-SM approach described in [230] is of 
interest here. Further improvements can also be made on the genetic algorithm level 
itself. Such as the introduction of niching, the refining of the fitness function (e.g., add 
a penalty proportional to the circuit complexity in order to obtain parsimonious mod-
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Fitness 
Average Scaled Error (ASE) 

DC |S11| |S12| |S21| 

Solution of Proposed Method 0.1091 0.0361 0.1598 0.1096 0.0411 
Pure Curtice 1.0881 0.0687 2.6477 0.1404 0.0537 

Pure Curtice + Input Mapping 0.7072 0.0817 2.7057 0.1213 0.0949 
Pure Curtice + Output Mapping 0.6713 0.0902 2.3196 0.1671 0.0833 

Pure Curtice + Diff. Mapping 1.1234 0.0751 2.7313 0.1392 0.0483 
Pure Materka 1.0802 0.0567 3.0519 0.1661 0.0739 

Pure Materka + Input Mapping 0.8916 0.0964 3.2018 0.1152 0.0996 

Pure Materka + Output Mapping 0.7852 0.0725 2.8681 0.1874 0.1126 

Pure Materka + Diff. Mapping 1.0669 0.0526 2.9479 0.1657 0.0703 

Pure Chalmers 0.2235 0.0307 0.3010 0.0670 0.0645 
Pure Chalmers + Input Mapping 0.1625 0.0301 0.5088 0.0669 0.0619 

Pure Chalmers + Output Mapping 0.1745 0.0341 0.4826 0.0633 0.0384 
Pure Chalmers + Diff. Mapping 0.2080 0.0312 0.6037 0.0708 0.0406 

Fitness 
Maximum Absolute Error (MAE) 

DC IS11I |S12| |S21| 
Solution of Proposed Method 0.1091 0.0268 0.4114 0.0773 4.4820 

Pure Curtice 1.0881 0.0149 0.9737 0.1822 6.4553 
Pure Curtice + Input Mapping 0.7072 0.0423 0.9116 0.1483 5.6536 

Pure Curtice + Output Mapping 0.6713 0.0337 1.1196 0.1568 6.1296 
Pure Curtice + Diff. Mapping 1.1234 0.0149 0.9951 0.1763 6.7160 

Pure Materka 1.0802 0.0105 1.1604 0.2323 6.3137 
Pure Materka + Input Mapping 0.8916 0.0412 0.9891 0.1696 7.9045 

Pure Materka + Output Mapping 0.7852 0.0282 1.4954 0.2308 6.3656 
Pure Materka + Diff. Mapping 1.0669 0.0123 1.1845 0.2276 5.7310 

Pure Chalmers 0.2235 0.0089 0.5436 0.0907 7.1590 
Pure Chalmers + Input Mapping 0.1625 0.0182 0.4981 0.0816 4.7307 

Pure Chalmers + Output Mapping 0.1745 0.0226 0.5986 0.0817 5.5792 
Pure Chalmers + Diff. Mapping 0.2080 0.0145 0.7365 0.0748 6.1568 

Table A.3: Comparison of the proposed evolutionary modeling method with pure models on the 
HEMT modeling problem. A lower fitness values means an overall more accurate 

model. The solution from the proposed method is a hybrid model with mappings and 
gives the best accuracy overall. 

els) , and the ex tens ion to mul t i -ob jec t ive evolu t ionary op t imiza t ion . T h e lat ter would 
p reven t one hav ing to define different we igh t ing factors for each of the object ives and 
a l low one to tackle the p r o b l e m direct ly. However , the compu ta t i ona l cos t w o u l d be 
m u c h higher . 

Final ly , o n e cou ld a lso cons ide r a l lowing the genet ic a lgo r i thm to evo lve the em
pir ical fo rmulae t hemse lves . In this case the bu i ld ing b locks are no t the fo rmula b locks 
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for each element but the individual equations themselves. This would most likely re
quire a switch to a hierarchical representation and more hardware in order to keep the 
solution method tractable. 
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SUMO Toolbox Developement 

Information 

Computers are useless. They can only give you answers. 
- Pablo Picasso 

B.l Introduction 

The purpose of this appendix is just to give a brief overview of the development of the 
SUMO Toolbox. As mentioned in section 4 .2 .1 , the S U M O Toolbox grew out of the 
M 3 Toolbox, an old screenshot of which is shown in figure B . l . The M 3 Toolbox was 
developed for two years (2006-2007) and in April 2008 the first version of the S U M O 
Toolbox was released. Thus at the time of writing the S U M O software stack has seen 
4 years of development by 3 full time researchers in the past three years. 

B.2 Infrastructure 

To coordinate development the project was initially supported by a standalone server 
and GForge installation (an old fork of the well known SourceForge project hosting 
system). This included mailing list (Mailman), revision control (Subversion), Wiki 
(MediaWiki), forum, and bug tracking functionality. However, this solution turned 
out to be overkill and difficult to maintain given the relatively small GForge devel
oper community. Thus a transition was made to a more loosely coupled system. The 
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Figure B. 1: An old screenshot of one of the first M3-Toolbox versions, highly customized to EM 
modeling problems. 

server (Debian Etch) was configured with a standalone MediaWiki installation and 
Subversion server and scripts were put in place to enable nightly builds of the lat
est development snapshots. This would serve as the main site for the SUMO Tool
box: h t t p : / /www. s u m o w i k i . i n t e c . u g e n t . b e . In addition a Drupal instal
lation was setup on the same server to act as portal to the wider res arch group ana 
their activities: h t t p .- / /www . sumo . i n t e c . u g e n t . b e . In 2009 this was fol
lowed by the start of a blog covering research activities related to the toolbox ( h t t p •' 
/ / s u m o l a b . b l o g s p o t . com) and the start of a YouTube video channel: h t t p : 
/ / w w w . y o u t u b e . c o m / u s e r / s u m o l a b . 

Finally, in addition to this infrastructure, a test server was also setup that would 
run through the nightly test suite to ensure regressions introduced during development 
were quickly detected. 

B.3 Development statistics 

The figures in this section show some development statistics. Note these figures only 
take into account the Matlab and Java source files and not any of the other files (txt, 

^0 ! 2 -
abs(model-lastmodel) 

Radius *l 
Angle . i f 

Frequency _ i l_ 

Modeling time' _iL 

modal 

L 

http://www.youtube.com/user/sumolab
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xml, doc, ppt, etc.) present in the repository. Figure B.2 shows the evolution of the 
lines of code throughout the project while figure B.3 shows the number of files. Figures 
B.4 and B.5 then illustrate how this translates to developer activity. 

SUMO Mat lab/Java files:Lines of Code and Churn Level 
eo ooo 
75,000 
70 ,000 
65,000 
60 ,000 
55 ,000 
50,000 

ui -15,000 
(u 
5 40 ,000 

_ l 

?5 000 
30 ,000 
25,000 
20,000 
15,000 
10,000 

5,000 
0 

20,000 

^ $• g = -^ ^ t— ~ <. zz 

Date 

|— lin^s oi Code • Linen touched] 

"" 3 

Figure B.2: LOC and Churn shows the usual LOC with the amount of code touched per day. 
Hopefully this should go decreasingly towards a release. 

SUMO Mat lab/Java files: File Count 
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Figure B.3: Number of files in the repository 

At the time of writing there have been 6400 commits to the repository with the 
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Figure B.4: Contributed LOC per author. 
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SUMO Matlab/Java files: Commit Activity 
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Figure B.5: Commit activity for each author 

most popular word in the commit messages being "fixed" (10.5%). A very (!) rough 
COCOMO II calculation shows these development statistics translate into a software 
development cost of about 400,000$. 
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B.4 Downloads 

A difficult part of writing software and making it available is estimating how many 
users are actually using the software and for what means. Users typically only give 
feedback if something is not working and even then they may not wish to give details 
on what exactly they are using the software for. Since for most of the lifetime of the 
project the license was fairly restricted and the download procedure very controlled 
we have at least a good idea of how many people at least took enough interest in the 
toolbox to go through the download process. The downside of this is, of course, that 
many potential users will have been put off by the license or access procedure. A 
summary of the download statistics of the SUMO Toolbox is shown in table B . l . 

Version 

5 
6 

6.0.1 
6.1 

6.1.1 
6.2 

6.2.1 

Release Date 

04/08/2008 
08/06/2008 
08/23/2008 
02/16/2009 
04/17/2009 
10/06/2009 
10/19/2009 

Days released 

120.00 
17.00 

177.00 
60.00 
172.00 
13.00 
44.00 

Total downloads 

92 
73 

N/A 
42 
108 

8 
42 

Downloads pe r day 

0.767 
4.294 
N/A 

0.700 
0.628 
0.615 
0.955 

Table B.l: SUMO Toolbox download summary as of 2 December 2009. 

It is also important to remark that it has really only been since the past one and a 
half years that the toolbox has been in a stable and accessible enough state, and with 
adequate documentation to allow more casual experimentation and testing. Older ver
sions would have required a much more specialist user with much higher perseverance. 

At the time of writing, about 250-300 users have registered to download the soft
ware, of which a small percentage will probably ever have used the toolbox for more 
than half an hour. However, such things are hard to find out since users do not always 
respond to questions. A trend does seem though, that while the number of download 
requests has slowed the past half year, the retention rate seems to have increased. An
other trend is the growing proportion of users from Indian and Chinese origins. It will 
be interesting to see how the use evolves as we move towards an open source license 
model with a more open download and usage policy. 

B.5 Conclusion 

This dissertation has of course focused on the research side of things. However, with 
the development of a publicly available toolbox much time was invested in necessary 
activities to ensure the software was publicly available and relatively stable. This in
cluded: setting up and administering the necessary hardware and software, writing and 
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updating of documentation, setting up test and nightly build infrastructure, keeping 
track of bugs, fixing release schedules and milestones, user support, etc. 

While these required a substantial amount of time and did not directly contribute 
to the research in short term, these activities did prove invaluable to ensuring long term 
stability and viability of the research goals. Furthermore, they greatly facilitated the 
dissemination of research results and proved an excellent means to get in touch with 
and setup collaborations with the wider research community. 

B.6 Version overview 

The development changelog across the different versions can be found in h t t p : / / 
sumowiki . i n t e c . u g e n t . b e / i n d e x . p h p / C h a n g e l o g . 



www.manaraa.com

Bibliography 

[1] J. T. Oden, "Revolutionizing engineering science through simulation," National 
Science Foundation (NSF), Blue Ribbon Panel on Simulation-Based Engineer
ing Science, Tech. Rep., 2006. 

[2] G. Wang and S. Shan, "Review of metamodeling techniques in support of en
gineering design optimization," Journal of Mechanical Design, vol. 129, no. 4, 
pp. 370-380 , 2007. 

[3] L. Gu, "A comparison of polynomial based regression models in vehicle safety 
analysis," in 2001 ASME Design Automation Conference, ASME, Pittsburgh, 
PA, A. Diaz, Ed., 2001 . 

[4] A. J. Keane and P. B. Nair, Computational approaches for Aerospace Design, 
The Pursuit of Excellence. The Atrium, Southern Gate, Chichester, West Sus
sex P 0 1 9 8SQ, England: John Wiley & Sons Ltd., 2005. 

[5] M. Meckesheimer, "A framework for metamodel-based design: Subsystem 
metamodel assessment and implementation issues," Ph.D. dissertation, The 
Pennsylvania State University, 2001 . 

[6] J. Sacks, W. J. Welch, T. Mitchell, and H. P. Wynn, "Design and analysis of 
computer experiments," Statistical science, vol. 4, no. 4, pp. 409—435, 1989. 

[7] J. C. Helton, "Conceptual and computational basis for the quantification of mar
gins and uncertainty," Sandia National Laboratories, Tech. Rep. SAND2009-
3055, June 2009. 

[8] J. Kleijnen, Design and Analysis of Simulation Experiments. Springer, 2008. 

[9] Y. Lin, "An efficient robust concept exploration method and sequential ex
ploratory experimental design," Ph.D. dissertation, Georgia Institute of Tech
nology, 2004. 

[10] T. Simpson, J. D. Poplinski, P. N. Koch, and J. K. Allen, "Metamodels for 
computer-based engineering design: Survey and recommendations." Eng. Corn-
put. (Lond.), vol. 17, no. 2, pp. 129-150, 2001 . 



www.manaraa.com

B-8 C I I A P T E R B 

[11] R. Jin, W Chen, and T. Simpson, "Comparative studies of metamodelling tech
niques under multiple modelling criteria," Structural and Multidisciplinary Op
timization, vol. 23 , no. 1, pp. 1—13, December 2001 . 

[12] N. Queipo, R. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, and P. Tucker, 
"Surrogate-based analysis and optimization," Progress in Aerospace Sciences, 
vol. 4 1 , pp. 1-28 ,2005. 

[13] R. Yang, N. Wang, C H. Tho, and J. P. Bobinaeu, "Metamodeling development 
for vehicle frontal impact simulation," Journal of Mechanical Design, vol. 127, 
no. 5, pp. 1014-1020, September 2005. 

[14] V. Chen, K.-L. Tsui, R. Barton, and M. Meckesheimer, "A review on design, 
modeling and applications of computer experiments," HE Transactions, vol. 38, 
pp. 273 -291 ,2006 . 

[15] H.-S. Chung and J. J. Alonso, "Comparison of approximation models with merit 
functions for design optimization," in 8th AIAA/USAF/NASA/ISSMO Sympo
sium on Multidisciplinary Analysis and Optimization, Long Beach, CA, Septem
ber 2000, a lAA Paper 2000-4754. 

[16] S. Gano, H. Kim, and D. Brown, "Comparison of three surrogate modeling 
techniques: Datascape, kriging, and second order regression," in Proceedings of 
the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 
AIAA-2006-7048, Portsmouth, Virginia, 2006. 

[17] T. Santner, B. Williams, and W. Notz, The design and analysis of computer 
experiments, ser. Springer scries in statistics. Springer, 2003. 

[18] D. Lim, Y.-S. Ong, Y. Jin, and B. Sendhoff, "A study on metamodeling tech
niques, ensembles, and multi-surrogates in evolutionary computation," in Pro
ceedings of the 9th Annual Conference on Genetic and Evolutionary Computa
tion (GECCO 07). New York, NY, USA: ACM, 2007, pp. 1288-1295. 

[19] H. Fang, M. Rais-Rohani, Z. Liu, and M. Horstemeyer, "A comparative study of 
metamodeling methods for multiobjective crashworthiness optimization " Com
puters and Structures, vol. 83, no. 25-26, pp. 2121—2136, 2005. 

[20] D. Gorissen, L. De Tommasi, K. Crombecq, and T. Dhaene, "Sequential mod
eling of a low noise amplifier with neural networks and active learning," Neural 
Computing and Applications, vol. 18, no. 5, pp. 485—494, Jun. 2009. 

[21] D. J. Toal, N. W. Bressloff, and A. J. Keane, "Kriging hyperparameter tuning 
strategies," AIAA Journal, vol. 46, no. 5, pp. 1240-1252, 2008. 

k 



www.manaraa.com

BIBLIOGRAPHY B-9 

[22] D. Busby, C L. Farmer, and A. Iske, "Hierarchical nonlinear approximation 
for experimental design and statistical data fitting," SIAM Journal on Scientific 
Computing, vol. 29, no. 1, pp. 4 9 - 6 9 , Jan. 2007. 

[23] A. Farhang-Mehr and S. Azarm, "Bayesian meta-modelling of engineering de
sign simulations: a sequential approach with adaptation to irregularities in the 
response behaviour," International Journal for Numerical Methods in Engineer
ing, vol. 62, no. 15, pp. 2104-2126 , 2005. 

[24] V. Devabhaktuni, B. Chattaraj, M. Yagoub, and Q.-J. Zhang, "Advanced mi
crowave modeling framework exploiting automatic model generation, knowl
edge neural networks, and space mapping," IEEE Transactions on Microwave 
Theory and Techniques, vol. 5 1 , no. 7, pp. 1 822—1833, Jul. 2003. 

[25] M. Ganser, K. Grossenbacher, M. Schutz, L. Willmes, and T. Back, "Simu
lation meta-models in the early phases of the product development process," 
in Proceedings of Efficient Methods for Robust Design and Optimization (EU-
ROMECFI 07), 2007. 

[26] D. J. Struik, A Concise Flistory of Mathematics. Dover Publications, 1987. 

[27] H. Schichl, Models and the history of modeling, in Modeling Languages in 
Mathematical Optimization. Kluwer, Boston, 2003, ch. 2, pp. 25—36. 

[28] J. Niehans, A History of Economic Theory. The John Hopkins University Press, 
Baltimore, 1990. 

[29] S. Hartmann, Modelling and Simulation in the Social Sciences from the Phi
losophy of Science Point of View, Theory and Decision Library. Dordrecht: 
Kluwer, 1996, ch. The World as a Process: Simulations in the Natural and So
cial Sciences, pp. 77—100. 

[30] R. Frigg and S. Hartmann, "Models in science," in Stanford Encyclopedia of 
Philosophy (Spring 2006 Edition), 2006. 

[31] W. Silvert, "Modeling as a discipline," Int. J. General Systems, vol. 30, no. 3, 
pp. 2 6 1 - 2 8 3 , 2 0 0 1 . 

[32] P. Humphreys, "Numerical experimentation," in Patrick Suppes Scientific 
Philosopher, P. Humphreys, Ed. Dordrecht, 1994, vol. 2, pp. 103—121. 

[33] , "Computer simulations," in Proceedings of The Philosophy of Science 
Association, A. Fine, M. Forbes, and L. Wessels, Eds., vol. 2. East Lansing, 
1991, pp. 497-506 . 

[34] D. S. Hira and P. K. Gupta, Operations Research. Dhanpatrai & Sons, 1999. 



www.manaraa.com

B-10 C H A P T E R S 

[35] G. Gordon, "The development of the general purpose simulation system (gpss), 
ACMSIGPLANNotices, vol. 13, no. 8, pp. 183-198, 1978. 

[36] J. R. Holmevik, "Compiling simula: A historical study of technological gene
sis," IEEE Annals of the History of Computing, vol. 16, no. 4, pp. 25—37, 1994-

[37] R. Sargent, "Verification and validation of simulation models," in Winter Simu
lation Conference, 2005 Proceedings of the, 4-7 Dec. 2005, p . 14pp. 

[38] D. B. Lee, "Requiem for large-scale models," Journal of the American Institute 
of Planners, vol. 39, pp. 163-178, 1973. 

[39] W. J. Karplus, "The spectrum of mathematical modeling and systems simula
tion," Mathematics and Computers in Simulation, vol. 19, pp. 3—10, 1977. 

[40] , "The spectrum of mathematical models," Perspectives in Computing* 
vol. 3, no. 2, pp. 4 - 1 3 , 1983. 

[41] Y.-C Lin, B. Fregly, R. Haftka, and N. Queipo, "Surrogate-based contact mod
eling for efficient dynamic simulation with deformable anatomic joints," i n 

Proceedings of the Tenth International Symposium on Computer Simulation W 
Biomechanics, 2005, pp. 23—24. 

[42] S. Mohaghegh, "Quantifying uncertainties associated with reservoir simulation 
studies using surrogate reservoir models," in SPE Annual Technical Conference 
and Exhibition (ATCE), 2006. 

[43] Z. Qian, C C Seepersad, J. V. Roshan, J. K. Allen, and C F. J. Wu, "Building 
surrogate models based on detailed and approximate simulations," Journal Qj 
Mechanical Design, vol. 128, no. 4, pp. 668—677, July 2006. 

[44] T. W. Simpson, V. Toropov, V. Balabanov, and F. A. C Viana, "Design and anal
ysis of computer experiments in multidisciplinary design optimization: a review 
of how far we have come or not," in Proceedings of the 12th AIAA/ISSMO 
Multidisciplinary Analysis and Optimization Conference, 2008 MAO, Victoria, 
Canada, 2008. 

[45] T. Goodman and R. Spence, "The effect of system response time on interactive 
computer aided problem solving," in SIGGRAPH '78: Proceedings of the 5th 
annual conference on Computer graphics and interactive techniques. N e ^ 
York, NY, USA: ACM, 1978, pp. 100-104. 

[46] T. Simpson, K. Barron, L. Rothrock, M. Frecker, R. Barton, and C Ligetti. 
"Impact of response delay and training on user performance with text-
based and graphical user interfaces for engineering design," Research tn 
Engineering Design, vol. 18, no. 2, pp. 49 -65 , Aug. 2007. [Online]. Available: 
http://dx.doi.org/10.1007/s00163-007-0033-y 

http://dx.doi.org/10.1007/s00163-007-0033-y


www.manaraa.com

BIBLIOGRAPHY B-ll 

[47] T. W Simpson, P. Iyer, K. Barron, L. Rothrock, M. Frecker, R. R. Barton, 
M., and Meckesheimer, "Metamodel-driven interfaces for engineering design: 
Impact of delay and problem size on user performance," in 46th AIAA/AS-
ME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference 
and 1st AIAA Multidisciplinary Design Optimization Specialist Conference, 
Austin, TX, AIAA, AIAA-2005-2060, 2005. 

[48] T. Lenton, R. Marsh, A. R. Price, D. J. Lunt, Y Aksenov, J. D. Annan, 
T. Cooper-Chadwick, S. J. Cox, N. R. Edwards, S. Goswami, J. C Hargreaves, 
P. P. Harris, Z. Jiao, V. N. Livina, A. J. Payne, I. C Rutt, J. G. Shepherd, P. J. 
Valdes, G. Williams, M. S. Williamson, , and A. Yool, "A modular, scalable, 
grid enabled integrated earth system modelling (genie) framework: Effects of 
atmospheric dynamics and ocean resolution on bi-stability of the thermohaline 
circulation." To appear in Climate Dynamics, 2007'. 

[49] R. R. Barton, "Design of experiments for fitting subsystem metamodels," in 
WSC '97: Proceedings of the 29th conference on Winter simulation. New 
York, NY, USA: ACM Press, 1997, pp. 303-310 . 

[50] W. Zhao and A. Verbraeck, "A framework for configurable hierarchical simu
lation in a multiple-user decision support environment," in Winter Simulation 
Conference, 2005 Proceedings of the, 4-7 Dec. 2005, p . 9pp. 

[51] J. P. C. Kleijnen, Handbook of Simulation. Wiley, New York, 1988, ch. Experi
mental design for sensitivity analysis, optimization, and validation of simulation 
models, pp . 173—223. 

[52] J. Kleijnen, "Strategic directions in verification, validation and accreditation 
research: A personal view," in Proceedings of the 2000 Winter Simulation 
Conference, no. urn:nbn:nl:ui: 12-83971, 2000, Open Access publications from 
Tilburg University, pp. 909-916 . [Online]. Available: http://ideas.repcc.Org/p/ 
ner/tilbur/urnnbnnlui 12-83971 .html 

[53] P. Janssen, P. Heuberger, and A. Tiktak, "Metamodelleren bij het mnp-rivm," 
Milieu- en Natuurplanbureau, Tech. Rep. 550013001/2005, 2005. 

[54] G. Weickum, M. Eldred, and K. Maute, "Multi-point extended reduced or
der modeling for design optimization and uncertainty analysis," in Proceedings 
of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and 
Materials Conference, Rhode Island (paper AIAA-2006-2145), May 2006., pp. 
V-A. 

[55] B. Bond and L. Daniel, "Parameterized model order reduction of nonlinear dy
namical systems," Computer-Aided Design, 2005. ICCAD-2005. IEEE/ACMIn
ternational Conference on, pp. 487-^494, Nov. 2005. 

http://ideas.repcc.Org/p/


www.manaraa.com

B-12 C H A P T E R B 

[56] S. Gugercin and A. Antoulas, "A comparative study of 7 algorithms for model 
reduction," in Decision and Control, 2000. Proceedings of the 39th IEEE Con
ference on, vol. 3 , 12-15 Dec. 2000, pp. 2367-2372vol.3. 

[57] M. Rewienski and J. White, "Model order reduction for nonlinear dynamical 
systems based on trajectory piecewise-linear approximations," Linear algebra 
and its applications, vol. 415, no. 2—3, pp. 426—454, 2006. 

[58] P. K. Davis and J. H. Bigelow, Motivated Metamodels: Synthesis of Cause-Effect 
Reasoning and Statistical Metamodeling. Rand Corporation, The, 2003. 

[59] S. S. Ravindran, "Real-time computational algorithm for optimal control of an 
M H D flow system," SIAM Journal on Scientific Computing, vol. 26, no. 4, pp-
1369-1388,2005. 

[60] K. Willcox and A. Megretski, "Fourier series for accurate, stable, reduced-order 
models in large-scale linear applications," SIAM Journal on Scientific Comput
ing, vol. 26, no. 3, pp. 944-962, 2005. 

[61] M. L. Parks, E. de Sturler, G. Mackey, D. D. Johnson, and S. Maiti, "Recycling 
Krylov subspaces for sequences of linear systems," SIAM Journal on Scientific 
Computing, vol. 28, no. 5, pp. 1651—1674, 2006. 

[62] M. E. Kilmer and E. de Sturler, "Recycling subspace information for diffuse 
optical tomography," SIAM Journal on Scientific Computing, vol. 27, no. 6, pp. 
2140-2166 ,2006 . 

[63] M. S. Eldred and D. M. Dunlavy, "Formulations for surrogate-based optimiza
tion wiht data fit, multifidelity, and reduced-order models," in 11th AIAA/ISSMO 
Multidisciplinary Analysis and Optimization Conference, Protsmouth, Virginia, 
2006. 

[64] J. Sterman, Business dynamics: Systems thinking and modeling for a complex 
world. Boston: Irwin/McGraw-Hill., 2000. 

[65] O. Nelles, Non-linear system identification. Berlin-Heidelberg, Springer Ver-
lag., 2000. 

[66] A. Varga, "Model reduction software in the SLICOT library," Applied and Com
putational Control, Signals, and Circuits, vol. 2, pp. 239—282, 2001. 

[67] D. P. Solomatine and A. Ostfeld, "Data-driven modelling : some past experi
ences and new approaches," Journal of hydroinformatics, vol. 10, no. 1, pp. 
3-22, 2008. 

[68] O. C. Lingjaerde and K. Liestol, "Generalized projection pursuit regression," 
SIAM Journal on Scientific Computing, vol. 20, no. 3, pp. 844—857, 1998. 



www.manaraa.com

BIBLIOGRAPHY B-13 

[69] A. Forrester, A. Sobester, and A. Keane, Engineering Design Via Surrogate 
Modelling: A Practical Guide. Wiley, 2008. 

[70] I. Enting, T. Wigley, and M. Heimann, "Future emissions and concentrations 
of carbon dioxide: Key ocean/atmosphere/land analyses," CSIRO Division of 
Atmospheric Research Commonwealth, Scientific and Industrial Research Or
ganisation, Aspendale, Australia, Tech. Rep. 31 , 1994. 

[71] G. R. V. Hooss, "A nonlinear impulse response model of the coupled carbon 
cycle-climate system," Climate Dynamics, vol. 18, pp. 189—202, 2001. 

[72] P. C. Young, "Data-based mechanistic modelling and validation of rainfall-flow 
processes," in M. G. Anderson (Ed.), Model Validation in Hydrological Science. 
Chichester: J. Wiley, 2001, pp. 117-161. 

[73] J. De Geest, T. Dhaene, N. Fache, and D. De Zutter, "Adaptive CAD-model 
building algorithm for general planar microwave structures," IEEE Transactions 
on Microwave Theory and Techniques, vol. 47, no. 9, pp. 1801-1809, Sep. 1999. 

[74] Q. J. Zhang and K. C. Gupta, Neural Networks for RF and Microwave Design 
(Book + Neuromodeler Disk). Norwood, MA, USA: Artech House, Inc., 2000. 

[75] S. Leary, A. Bhaskar, and A. J. Keane, "A knowledge-based approach to re
sponse surface modelling in multifidelity optimization," Journal of Global Op
timization, vol. 26, no. 23, pp. 297—319, 2003. 

[76] J. Bandler, Q. Cheng, S. Dakroury, A. Mohamed, M. Bakr, K. Madsen, and 
J. Sondergaard, "Space mapping: the state of the art," IEEE Transactions on 
Microwave Theory and Techniques, vol. 52, no. I, pp. 337—361, Jan. 2004. 

[77] S. Koziel, J. Bandler, and K. Madsen, "Space-mapping-based interpolation for 
engineering optimization," Microwave Theory and Techniques, IEEE Transac
tions on, vol. 54, no. 6, pp. 2410-2421 , June 2006. 

[78] J. Zhu, J. Bandler, N. Nikolova, and S. Koziel, "Antenna optimization through 
space mapping," Antennas and Propagation, IEEE Transactions on, vol. 55, 
no. 3, pp. 651-658, March 2007. 

[79] S. Koziel and J. Bandler, "Space-mapping optimization with adaptive surro
gate model," Microwave Theory and Techniques, IEEE Transactions on, vol. 55, 
no. 3, pp. 541-547, March 2007. 

[80] P. K. Davis and J. H. Bigelow, "Motivated metamodels," in Proceedings of The 
2002 Per MIS Workshop, 2002. 



www.manaraa.com

B-14 CHAPTER B 

[81] C. M. Holden and A. J. Keane, "Visualization methodologies in aircraft de
sign," in Proceedings of the 10th AIAA/ISSMO Multidisciplinary Analysis and 
Optimization Conference. Reston, USA, 2004, pp. 1—14. 

[82] G. E. P. Box and K. Wilson, "On the experimental attainment of optimum con
ditions (with discussions)," Journal of the Royal Statistical Society Series B, 
vol. 13, no. l , p p . 1-45, 1951. 

[83] J. P. Kleijnen, "A comment on blanning's metamodel for sensitivity analysis: 
The regression metamodel in simulation," Interfaces, vol. 5, no. 3, pp. 21—23, 
May 1975. 

[84] T. Fabian, J. L. Fisher, M. W. Sasieni, and A. Yardcni, "Purchasing raw material 
on a fluctuating market," Operations Research, vol. 7, pp. 107—122, 1 959. 

[85] T. Goel, R. Haftka, and W. Shyy, "Comparing error estimation measures for 
polynomial and kriging approximation of noise-free functions," Journal of 
Structural and Multidisciplinary Optimization, vol. 28, no. 5, pp. 429—442, June 
2009. 

[86] Y. S. Ong, P. B. Nair, A. J. Keane, and K. W. Wong, Studies in Fuzziness and Soft 
Computing Series. Springer Verlag, 2004, ch. Surrogate-Assisted Evolution
ary Optimization Frameworks for High-Fidelity Engineering Design Problems, 
Knowledge Incorporation in Evolutionary Computation, pp. 307—331. 

[87] T. Goel, R. Haftka, W. Shyy, and N. Queipo, "Ensemble of surrogates," Struc
tural and Multidisciplinary Optimization, vol. 33 , pp. 199—216, 2007. 

[88] A. Giunta and M. Eldred, "Implementation of a trust region model manage
ment strategy in the DAKOTA optimization toolkit," in Proceedings of the 8th 
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Opti
mization, Long Beach, CA, 2000. 

[89] D. R. Jones, M. Schonlau, and W. J. Welch, "Efficient global optimization of 
expensive black-box functions," Journal of Global Optimization, vol. 13, no. 4, 
pp. 455-492 , Nov. 1998. 

[90] M. J. Sasena, P. Y Papalambros, and P. Goovaerts, "Metamodeling sampling 
criteria in a global optimization framework," in 8th AIAA/ USAF/NASA/ISSMO 
Symposium on Multidisciplinary Analysis and Optimization, Long Beach, CA, 
AIAA Paper 2000-4921., 2000. 

[91] I. Parmee, J. Abraham, M. Shackelford, O. F. Rana, and A. Shaikhali, "Towards 
autonomous evolutionary design systems via grid-based technologies," in Pro
ceedings of'ASCE Computing in Civil Engineering, Cancun, Mexico, 2005. 



www.manaraa.com

BIBLIOGRAPHY B-15 

[92] D. Abramson, T. Peachey, and A. Lewis, "Model optimization and parameter 
estimation with Nimrod/O." in International Conference on Computational Sci
ence, 2006, pp . 720-727 . 

[93] M. Eldred, D. Outka, C. Fulcher, and W. Bohnhoff, "Optimization of complex 
mechanics simulations with object-oriented software design," in Proceedings 
of the 36th IAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and 
Materials Conference, New Orleans, LA, 1995, pp. 2406—2415. 

[94] A. I. J. Forrester, N. W. Bressloff, and A. J. Keane, "Optimization using surro
gate models and partially converged computational fluid dynamics simulations," 
Proceedings of the Royal Society, vol. 462, pp. 2177-2204, 2006. 

[95] J. P. C. Kleijnen, W. van Beers, and I. V. Nieuwenhuyse, "Constrained Opti
mization in Simulation: A Novel Approach," European Journal of Operational 
Research, vol. 202, pp. 164-174, 2010. 

[96] J. P. C. Kleijnen, Advancing the Frontiers of Simulation. Springer, 2009, ch. 
Factor screening in simulation experiments: review of sequential bifurcation, 
p p . 1 6 9 - 1 7 3 . 

[97] H.-Y Fan, G. S. Dulikravich, and Z.-X. Han, "Aerodynamic data modeling us
ing support vector machines," Inverse Problems in Science and Engineering, 
vol. 13, no. 3, pp. 261-278 , June 2005. 

[98] G. Dellino, J. P. C. Kleijnen, and C. Meloni, "Robust simulation-optimization 
using metamodels," in Proceedings of the 41th Winter Simulation Conference, 
2009. 

[99] R. Barton, "Issues in development of simultaneous forward-inverse metamod
els," in Proceedings of the Winter Simulation Conference, 2005, pp. 209—217. 

[100] W. J. H. V. Groenendaal and J. P. C. Kleijnen, "Deterministic versus stochas
tic sensitivity analysis in investment problems: An environmental case study," 
European Journal of Operational Research, vol. 141, no. 1, pp. 8 — 20, 2002. 

[101] T. W Tewoldeberhan and A. Verbraeck, "Using web services and artificial intel
ligence techniques to develop simulation models of business networks," in 15th 
European Simulation Symposium and Exhibition, 2003. 

[102] I. Dahm and J. Ziegler, "Using artificial neural networks to construct a meta
model for the evolution of gait patterns of four-legged walking robots," in Pro
ceedings of the 5th Conf. on Climbing and Walking Robots and the Support 
Technologies for Mobile Machines (CLAWAR2002), P. Bidaud and F. B. Amar, 
Eds. Bury St. Edmunds, UK: Professional Engineering Publ., 2002, pp. 8 2 5 -
832. 



www.manaraa.com

B-16 C H A P T E R B 

[103] S. Xiao, B. Z. Wang, X. Zhong, and G. Wang, "Wideband mobile antenna de
sign based on artificial neural network models," International Journal of RF 
and Microwave Computer-Aided Engineering, vol. 13, no. 4, pp. 316—320, July 
2003. 

[104] H. Lee, B. Sanso, W. Zhou, and D. Higdon, "Inference for a proton accelerator 
using convolution models," University of Calafornia Santa Cruz, Tech. Rep-
ams-2005-31,2005. 

[105] D. Knight, J. Kohn, K. Rasheed, N. Weber, V Kholodovych, W Welsh, and 
J. Smith, "Using surrogate modeling in the prediction of fibrinogen adsorption 
onto polymer surfaces," Journal of chemical information and computer science, 
vol. 55, pp. 1088-1097, 2004. 

[106] A. Tiktak, J. Boesten, A. V. der Linden, and M. Vanclooster, "Mapping the 
vulnerability of european groundwater to leaching of pesticides with a process 
based meta-model of europearl," Journal of Environmental Quality, vol. 35, pp-
1213-1226,2006. 

[107] P. A. Stockwell DRB, "Effects of sample size on accuracy of species distribution 
models," Ecological Modelling, vol. 148, pp. 1—13,2002. 

[108] A. T. P. Stockwell D., "Comparison of resolution of methods used in mapping 
biodiversity patterns from point-occurrence data," Ecological Indicators, vol. 3, 
pp. 2 1 3 - 2 2 1 , 2 0 0 3 . 

[109] S. D. Mohaghegh, A. Modavi, H. Hafez, M. Haajizadeh, M. Kenawy, and S. Gu-
ruswamy, "Development of surrogate reservoir models (SRM) for fast track 
analysis of complex reservoirs," in SPE Intelligent Energy Conference and Ex
hibition. 11-13 April 2006, Amsterdam, 2006. 

[110] C. L. D. Mensink, "A policy oriented model system for the assessment of 
longterm effects of emission reductions on ozone," in 25th NATO/CCMS In
ternational Technical Meeting on Air Pollution Modelling and its Application, 
Louvain-la-Neuve, Belgium, 2001 . 

[ I l l ] S. H. F. G. Margaret Edwards and G. Deffuant, "Comparing an individual-based 
model of behaviour diffusion with its mean field aggregate approximation," 
Journal of Artificial Societies and Social Simulation, vol. 6, no. 4, 2003. 

[112] D. Hidovic and J. Rowe, "Validating a model of colon colouration using an 
evolution strategy with adaptive approximations," in Proceedings of The Ge
netic and Evolutionary Computation Conference (GECCO) 2004, vol. 3103. 
Springer-Verlag, 2004, pp. 1005-1016. 



www.manaraa.com

BIBLIOGRAPHY B-17 

[113] M. Ding and R. Vemur, "An active learning scheme using support vector ma
chines for analog circuit feasibility classification," in 18th International Confer
ence on VLSI Design, Jan. 2005, pp. 528-534. 

[114] T. G. Robertazzi and S. C. Schwartz, "An accelerated sequential algorithm for 
producing D-optimal designs," Siam Journal on scientific Computing, vol. 10, 
pp. 341-358 , Mar. 1989. 

[115] A. C. Keys and L. P. Rees, "A sequential-design metamodeling strategy for sim
ulation optimization," Computers and Operational Research, vol. 31 , no. 11, pp. 
1911-1932,2004. 

[116] D. Tikk, L. T. Koczy, and T. D. Gcdeon, "A survey on universal approximation 
and its limits in soft computing techniques," International Journal of Approxi
mate Reasoning, vol. 33 , no. 2, pp. 185—202, 2003. 

[117] V. I. Arnold, "On functions of three variables," Doklady Akademii Nauk, USSR, 
vol. 114, pp. 6 7 9 - 6 8 1 , 1957. 

[118] A . N . Kolmogorov, "On the representation of continuous functions of many vari
ables by superpositions of continuous functions of one variable and addition," 
Dokl. Akad. USSR, vol. 114, pp. 953-956, 1957. 

[119] S. Lawrence, C. L. Giles, and A. C. Tsoi, "What size neural network gives 
optimal generalization? convergence properties of backpropagation (umiacs-tr-
96-22)," University of Queensland, St. Lucia, Australia, Tech. Rep., 1996. 

[120] M. Davis, R. Sigal, and E. J. Weyuker, Computability, complexity, and lan
guages: fundamentals of theoretical computer science. Academic Press, 1994. 

[121] M. Li and P. M. Vitnyi, An Introduction to Kolmogorov Complexity and Its Ap
plications. Springer Publishing Company, Incorporated, 2008. 

[122] P. Binev, A. Cohen, W. Dahmen, R. DeVore, and V. Temlyakov, "Universal 
algorithms for learning theory part I : Pieccwise constant functions," Journal of 
Machine Learning Research, vol. 6, pp. 1297—1321, 2005. 

[123] M. C. Kennedy and A. O'Hagan, "Bayesian calibration of computer models 
(with discussion)," Journal of the Royal Statistical Society Series B, vol. 63, pp. 
4 2 5 - 4 6 4 , 2 0 0 1 . 

[124] J. Oakley and A. O'Hagan, "Bayesian inference for the uncertainty distribution 
of computer model outputs," Biometrika, vol. 89, no. 4, pp. 769—784, 2002. 

[125] A. O'Hagan, "Bayesian analysis of computer code outputs: a tutorial," Reliabil
ity Engineering and System Safety, vol. 91 , pp. 1290—1300, 2006. 



www.manaraa.com

B-18 CHAPTERB 

[126] J. Rougier, "Lightweight emulators for complex multivariate functions, mucm 
technical report 07/02," University of Durham, Tech. Rep., 2007. 

[127] C E. Rasmussen and C K. I. Williams, Gaussian Processes for Machine Learn
ing. MIT Press, 2006. 

[128] E. T. Jaynes, Probability Theory : The Logic of Science. Cambridge University 
Press, April 2003. 

[129] S. Conti and A. O'Hagan, "Bayesian emulation of complex multi-output and 
dynamic computer models, research report no. 569/07, submitted to Journal of 
Statistical Planning and Inference." Department of Probability and Statistics, 
University of Sheffield, Tech. Rep., 2007. 

[130] L. M. J. H. J. Vlccshouwers, "A metamodel for PCLake," RIVM, Bilthoven, 
Tech. Rep. 703715 007, 2004. 

[131] R. A. Fisher, The Design of Experiments. Olyver and Boyd Edinburgh, 1935. 

[132] R. Myers, Response surface methodology. Boston: Allyn and Bacon, Inc., 
1971. 

[133] R. H. Myers, D. C. Montgomery, and C. Anderson-Cook, Response surface 
methodology: process and product optimization using designed experiments-
Wiley, New York., 2009. 

[134] J. Fellman, "Gustav Elfving's contribution to the emergence of the optimal ex
perimental design theory," Statistical Science, vol. 14, no. 2, pp. 197—200, 1999. 

[135] J. Kiefer and J. Wolfowitz, "Optimum designs in regression problems," Annals 
of Mathematical Statistics, vol. 30, pp. 271—294, 1959. 

[136] M. Brown, S. Adams, B. Dunlavy, D. Gay, D. Swiler, L. Giunta, A. Hart, 
W. Watson, J.-P. Eddy, J. Griffin, J. Hough, P. Kolda, T. Martinez-Canales, 
M. Eldred, and P. Williams, "Dakota, a multilevel parallel object-oriented frame
work for design optimization, parameter estimation, uncertainty quantification, 
and sensitivity analysis: Version 4.1 users manual," Sandia Labs, Tech. Rep-
SAND2006-6337, September 2007. 

[137] M. D. McKay, R. J. Beckman, and W. J. Conover, "A comparison of three meth
ods for selecting values of input variables in the analysis of output from a com
puter code," Technometries, vol. 42, no. 1, pp. 55—61, 2000. 

[138] J. Kleijnen, S. Sanchez, T. Lucas, and T. Cioppa, "State-of-the-art review: A 
user's guide to the brave new world of designing simulation experiments," IN
FORMS Journal on Computing, vol. 17, no. 3, pp. 263—289, 2005. 



www.manaraa.com

BIBLIOGRAPHY B-19 

[139] K.-T. Fang, R. Li, and A. Sudjianto, Design and Modeling for Computer Exper
iments. Chapman & Hall/CRC, 2005. 

[140] J. R. Koehler and A. B. Owen, "Computer experiments," in Handbook of Statis
tics, S. Ghosh and C. R. Rao, Eds. Elsevier science, 1996, vol. 13, pp. 261—308. 

[141] A. Siem, "Property preservation and quality measures in meta-models," Ph.D. 
dissertation, Tilburg University, Tilburg, Netherlands, 2007. 

[142] D. Gorissen, L. De Tommasi, W. Hendrickx, J. Croon, and T. Dhaene, "RF 
circuit block modeling via kriging surrogates," in Proceedings of the 17th In
ternational Conference on Microwaves, Radar and Wireless Communications 
(MIKON 2008), 2008. 

[143] J. P. C. Kleijnen and W. van Beers, "Application-driven sequential designs for 
simulation experiments: Kriging metamodeling," Journal of the Operational 
Research Society, vol. 55, no . 9, pp . 876—883, Aug. 2004. 

[144] R. Gautier and L. Pronzato, "Sequential design and active control," in Proceed
ings 1997 AMS-IMS-SIAMSummer Conference, IMS Lectures Notes, New De
velopments and Applications in Experimental Design, W. R. N. Flournoy and 
W. Wong, Eds., vol. 34, 1997, pp. 138-151 . 

[145] , "Active sequential design in nonlinear situations," in 52nd Session of the 
International Statistics Institute, Helsinki, Finland, August 1999. 

[146] R.Gautier and L. Pronzato, "Adaptive control for sequential design," Discus-
siones Mathematicae, Probability & Statistics, vol. 20, no. I, pp . 97—114, 2000. 

[147] T. Simpson, D. Lin, and W. Chen, "Sampling strategics for computer experi
ments: Design and analysis," International Journal of Reliability and Applica
tion, vol. 2, no. 3, pp. 209-240 , 2002. 

[148] C. J. M. I. C. Turner, "Generic sequential sampling for metamodel approxima
tions," in DETC'03: ASME 2003 Design Engineering Technical Conferences 
and Computers and Information in Engineering Conference, Chicago, Illinois, 
2003. 

[149] R. Jin, W. Chen, and A. Sudjianto, "An efficient algorithm for constructing op
timal design of computer experiments," Journal of Statistical Planning and In
ference, August 2003. 

[150] , "Analytical metamodel-bascd global sensitivity analysis and uncertainty 
propagation for robust design, paper 2004010429," in SAE Transactions, SAE 
Congress, Detroit, 2004. 



www.manaraa.com

B-20 C H A P T E R B 

[151] Y Lin, F. Mistree, J. Allen, and K.-L. Tsui, "Sequential metamodeling in engi" 
neering design," in Proceedings of10th AIAA/ISSMO Multidisciplinary Analyst 
and Optimization Conference, 2004. 

[152] T. E. Murphy, Y Lin, K.-L. Tsui, J. K. Allen, V Chen, and F. Mistree, "Robust 
engineering design," in Proceedings of the International Conference on Engi
neering Design (ICED07), Paris, France, Jan. 2004. 

[153] T W. Simpson, A. J. Booker, D. Ghosh, A. A. Giunta, P. N. Koch, and R--J-
Yang, "Approximation methods in multidisciplinary analysis and optimization: 
A panel discussion," Structural and Multidisciplinary Optimization, vol. 27, 
no. 5, pp. 302-313 ,2004 . 

[154] M. J. Sasena, M. Parkinson, M. P. Reed, P. Y Papalambros, and P. Goovaerts, 
"Improving an ergonomics testing procedure via approximation-based adaptive 
experimental design," Journal of Mechanical Design, vol. 127, no. 5, pp. 1006— 
1013, September 2005. 

[155] W Hendrickx and T. Dhaene, "Sequential design and rational metamodel ling,' 
in Proceedings of the 2005 Winter Simulation Conference, M. Kuhl, S. N. M-> 
F. B. Armstrong, and J. A. Joines, Eds., Dec. 2005, pp. 290-298 . 

[156] J. P. C. Kleijnen and W. van Beers, "Application-driven sequential designs for 
simulation experiments: Kriging metamodeling," Journal of the Operational 
Research Society, vol. 55, no. 9, pp. 876-883 , Aug. 2004. 

[157] C. Turner, R. Crawford, and M. Campbell, "Multidimensional sequential sam
pling for NURBs-based metamodel development," Engineering with Comput
ers, vol. 23 , no. 3, pp. 155-174, 2007. 

[158] E. Vladislavleva, "Model-based problem solving through symbolic regres
sion via pareto genetic programming," Ph.D. dissertation, Tilburg University, 
Tilburg, the Netherlands, 2008. 

[159] L. Liu, "Could enough samples be more important than better designs for com
puter experiments?" in Annual Simulation Symposium, 2005, pp. 107—115. 

[160] R. Lehmensiek, P. Meyer, and M. Muller, "Adaptive sampling applied to mul
tivariate, multiple output rational interpolation models with applications to mi
crowave circuits," International Journal of'RF and microwave computer aided 
engineering, vol. 12, no. 4, pp. 332—340, 2002. 

[161] D. Deschrijvcr and T. Dhaene, "Rational modeling of spectral data using or-
thonormal vector fitting," in Signal Propagation on Interconnects, 2005. Pro
ceedings. 9th IEEE Workshop on, 10-13 May 2005, pp. 111-114. 

; 



www.manaraa.com

BIBLIOGRAPHY B-21 

[162] P. Triverio, S. Grivet-Talocia, M. Nakhla, F. G. Canavero, and R. Achar, "Sta
bility, causality, and passivity in electrical interconnect models," IEEE Transac
tions on Advanced Packaging, vol. 30, no. 4, pp. 795—808, 2007. 

[163] Y. Xiong, W. . Chen, D. Apley, and X. Ding, "A nonstationary covariance-based 
kriging method for metamodeling in engineering design," International Journal 
for Numerical Methods in Engineering, vol. 71 , no. 6, pp. 733—756, 2007'. 

[164] D. Wolpert, "The supervised learning no-free-lunch theorems," in Proceedings 
of the 6th Online World Conference on Soft Computing in Industrial Applica
tions, 2001 . 

[165] D. H. Wolpert, "On the connection between in-sample testing and generalization 
error," Complex Systems, vol. 6, pp. 47—94, 1992. 

[166] S. Geman, E. Bienenstock, and R. Doursat, "Neural networks and the bias/vari
ance dilemma," Neural Comput., vol. 4, no. 1, pp. 1—58, 1992. 

[167] S. Yesilyurt, C. K. Ghaddar, M. E. Cruz, and A. T. Patera, "Bayesian-validated 
surrogates for noisy computer simulations; application to random media," SIAM 
Journal on Scientific Computing, vol. 17, no. 4, pp. 973—992, 1996. 

[168] S. M. Clarke, J. H. Griebsch, and T. Simpson, "Analysis of support vector re
gression for approximation of complex engineering analyses," in Proceedings of 
the 29th Design Automation Conference (ASME Design Engineering Technical 
Conferences) (DAC/DETC'03), Sep 2003. 

[169] H. Frohlich and A. Zell, "Efficient parameter selection for support vector ma
chines in classification and regression via model-based global optimization," in 
In Proc. of the International Joint Conference on Neural Networks (IJCNN), 
vol. 3, 2005, pp. 1431-1438. 

[170] M. Meckesheimer, A. J. Booker, R. Barton, and T. Simpson, "Computationally 
inexpensive metamodel assessment strategies," AIAA Journal, vol. 40, no. 1 0, 
pp. 2053-2060, 2002. 

[171] D. A. Kenneth P. Burnham, Model Selection and Multi-Model Inference. 
Springer, 2003. 

[172] C. Gold, A. Holub, and P. Sollich, "Bayesian approach to feature selection 
and parameter tuning for support vector machine classifiers," Neural Networks, 
vol. 18, no. 5-6, pp. 6 9 3 - 7 0 1 , 2005. 

[173] D. J. C. MacKay, "Probable networks and plausible predictions — a review of 
practical Bayesian methods for supervised neural networks," Network: Compu
tation in Neural Systems, vol. 6, pp. 469—505, 1995. 



www.manaraa.com

B-22 CHAPTERB 

[174] C. Perttunen, "Bayesian model parameter estimation of systems subject to ran
dom input and output measurement error," in Systems Engineering, 1989., IEE& 
International Conference on, 24-26 Aug. 1989, pp. 227—230. 

[175] A. Saksena, D. Lucarelli, and I.-J. Wang, "Bayesian model selection for mining 
mass spectrometry data." Neural Networks, vol. 18, no. 5-6, pp. 843—849, 2005-

[176] D. Madigan, A. Gcnkin, D. D. Lewis, and D. Fradkin, "Bayesian multinomial 
logistic regression for author identification," in AIP Conference Proceedings 
of 25th International Workshop on Bayesian Inference and Maximum Entropy 
Methods in Science and Engineering, vol. 803, November 2005, pp. 509—516. 

[177] D. Anguita, S. Ridella, F. Rivicccio, and R. Zunino, "Automatic hyperparameter 
tuning for support vector machines," in ICANN '02: Proceedings of the Inter
national Conference on Artificial Neural Networks. London, UK: Springer-
Verlag, 2002, pp. 1345-1350. 

[178] V. N. Vapnik, The nature of statistical learning theory. New York, NY, USA: 
Springer-Verlag New York, Inc., 1995. 

[179] T. Poggio, R. Rifkin, S. Mukherjee, and P. Niyogi, "General conditions for pre-
dictivity in learning theory," Nature, vol. 428, pp. 419-422 , 2004. 

[180] K. Smets, B. Verdonk, and E. M. Jordaan, "Evaluation of performance measures 
for SVR hyperparameter selection," in Proceedings of the International Joint 
Conference on Neural Networks (IJCNN2007), 2007. 

[181] R. Kohavi, "A study of cross-validation and bootstrap for accuracy estimation 
and model selection," in International Joint Conference on Artificial Intelli
gence, 1995, pp. 1137-1145. 

[182] A. Abd El-Sallam, S. Kayhan, and A. Zoubir, "Bootstrap and backward elimi
nation based approaches for model selection," in Proceedings of the 3rd Inter
national Symposium on Image and Signal Processing and Analysis, vol. 1, Sep-
2003, pp. 152-157. 

[183] Y.-Y Ou, C.-Y. Chen, S.-C. Hwang, and Y.-J. Oyang, "Expediting model selec
tion for support vector machines based on data reduction," in Systems, Man and 
Cybernetics, 2003. IEEE International Conference on, vol. 1, 5-8 Oct. 2003, pp-
786-791vol . l . 

[184] G. Cawley, "Leavc-onc-out cross-validation based model selection criteria for 
weighted LS-SVMs," in Neural Networks, 2006. IJCNN '06. International Joint 
Conference on, 16-21 July 2006, pp. 1661—1668. 



www.manaraa.com

BIBLIOGRAPHY B-23 

[185] J. Kleijnen and R. G. Sargent, "A methodology for the fitting and validation 
of metamodels in simulation," European Journal of Operational Research, vol. 
120, pp. 14-29 ,2000 . 

[186] R. Easterling and J. Berger, "Statistical foundations for the validation of com
puter models," in Proceedings of the Workshop on Foundations for V&V in the 
21st Century, D. Pace and S. Stevenson, Eds. Society for Modeling and Sim
ulation International, 2002. 

[187] M. Berger, J. Paulo, R. Sacks, J. Cafeo, J. Cavendish, J. Lin, C. Bayarri, and 
J. Tu, "A framework for the validation of computer models." University of Bris
tol, Statistics Group, Tech. Rep., 2005. 

[188] C. Alippi, "Selecting accurate, robust, and minimal feedforward neural net
works," IEEE Transactions on Circuits and Systems I: Fundamental Theory and 
Applications, vol. 49, no. 12, pp. 1799-1810, Dec. 2002. 

[189] G. Vazquez Elisa, R. Galindo, P. Joaquin, and Y. Andres, "Model selection meth
ods in multilayer perceptrons," in Neural Networks, 2004. Proceedings. 2004 

. IEEE International Joint Conference on, vol. 2, 25-29 July 2004, pp. 1009— 
1014vol.2. 

[190] H. Chen and S. Huang, "A comparative study on model selection and multiple 
model fusion," in Information Fusion, 2005 8th International Conference on, 
vol. 1, 25-28 July 2005, p . 7pp. 

[191] P L . Bartlett, S. Boucheron, and G. Lugosi, "Model selection and error estima
tion," Machine Learning, vol. 48, no. 1 -3 , pp. 85—113, 2002. 

[192] A. Gelman, "Two-stage regression and multilevel modeling: A commentary," 
Political Analysis, vol. 13, pp. 459^461 , 2005. 

[193] , "Multilevel modeling what it can and cannot do," Technometrics, vol. 48 , 
pp. 241 -251 ,2006 . 

[194] F. H. Branin, Jr., "Computer methods of network analysis," in DAC '67: Pro
ceedings of the 4th Design Automation Conference. New York, NY, USA: 
ACM, 1967, pp. 8.1-8.19. 

[195] G. Kron, Diakoptics - The Piecewise Solution of Large-Seale Systems. Mac-
donald & Company, Ltd., 1963. 

[196] G. E. P. Box and R. D. Meyer, "An analysis for unreplicated fractional factori
als," Technometrics, vol. 28, no. I, pp. 11—18., 1986. 



www.manaraa.com

B-24 C H A P T E R B 

[197] J. M. Zentner, "A design space exploration process for large scale, multi-
objective computer simulations," Ph.D. dissertation, School of Aerospace En
gineering, Georgia Institute of Technology, 2006. 

[198] H. Hamad and A. Al-Smadi, "Space partitioning in engineering design via meta
model acceptance score distribution," Engineering with Computers, vol. 23, 
no. 3, pp. 175-185 ,2007 . 

[199] S. Yerramareddy and S. C.-Y. Lu, "Hierarchical and interactive decision refine
ment methodology for engineering design," Research in Engineering Design* 
vol. 4, no. 4, pp. 227-240 , 1993. 

[200] R. Collobert, S. Bcngio, and Y Bengio, "A parallel mixture of svms for very 
large scale problems," Neural Computing, vol. 14, no. 5, pp. 1105—1114, 2002-

[201] R. B. Gramacy and H. K. H. Lee, "Adaptive design and analysis of supercom
puter experiments," Technometrics, vol. 51 , no. 2, pp. 130—145, May 2009. 

[202] A. Sharkey, "On combining artificial neural nets." Connectionist Science, vol. 8, 
no. 3, pp. 299-314 , 1996. 

[203] L. Hansen and P. Salamon, "Neural network ensembles," Pattern Analysis and 
Machine Intelligence, IEEE Transactions on, vol. 12, no. 10, pp. 993—1001, Oct. 
1990. 

[204] A. Krogh and J. Vedelsby, "Neural network ensembles, cross validation, and 
active learning," in Advances in Neural Information Processing Systems 7, NIPS 
Conference, Denver, CO, Dec. 1994, pp. 231-238 . 

[205] Y. Liu and X. Yao, "A cooperative ensemble learning system," in Neural Net
works Proceedings, 1998. IEEE World Congress on Computational Intelligence. 
The 1998 IEEE International Joint Conference on, vol. 3, 4-9 May 1998, pp-
2202-2207vol .3 . 

[206] L.-W. Chan, "Weighted least square ensemble networks," in International Joint 
Conference on Neural Networks, vol. 2, Jul. 1999, pp. 1393—1396. 

[207] Y Liu, X. Yao, and T. Higuchi, "Evolutionary ensembles with negative correla
tion learning," IEEE Transactions on Evolutionary Computation, vol. 4, no. 4, 
pp. 380-387 , Nov 2000. 

[208] W. Wang, D. Partridge, and J. Etherington, "Hybrid ensembles and coincident-
failure diversity," in Proceedings of the International Joint Conference on Neu
ral Networks, vol. 4, Jul. 2001 , pp. 2376-2381 . 



www.manaraa.com

BIBLIOGRAPHY B-25 

[209] Y. Kim, W. Street, and F. Menczer, "Meta-evolutionary ensembles," in Proceed
ings of the International Joint Conference on Neural Networks, vol. 3, May 
2002, pp. 2791-2796. 

[210] B.-Y. Sun and D.-S. Huang, "Least squares support vector machine ensemble," 
in International Joint Conference on Neural Networks, vol. 3, Jul. 2004, pp. 
2013-2016. 

[211] G. Webb and Z. Zheng, "Multistrategy ensemble learning: reducing error by 
combining ensemble learning techniques," Knowledge and Data Engineering, 
IEEE Transactions on, vol. 16, no. 8, pp. 980 -991 , Aug. 2004. 

[212] Z.-H. Zhou and Y Jiang, "NeC4.5: neural ensemble based C4.5," Knowledge 
and Data Engineering, IEEE Transactions on, vol. 16, no. 6, pp. 770—773, June 
2004. 

[213] Y. Li, R.-P. Yin, Y.-Z. Cai, and X.-M. Xu, "A new decision fusion method in 
support vector machine ensemble," in Machine Learning and Cybernetics, 2005. 
Proceedings of 2005 International Conference on, vol. 6, 18-21 Aug. 2005, pp. 
3304-3308Vol.6. 

[214] S. Zhou and Z. Sun, "Can ensemble method convert a weak evolutionary al
gorithm to a strong one?" in Proceedings of the International Conference on 
Computational Intelligence for Modelling, Control and Automation and Inter
national Conference on Intelligent Agents, Web Technologies and Internet Com
merce, vol. 2, 28-30 Nov. 2005, pp. 68-74. 

[215] Y. Zhao, J. Gao, and X. Yang, "A survey of neural network ensembles," in In
ternational Conference on Neural Networks and Brain, vol. 1, Oct. 2005, pp. 
438-442 . 

[216] S. Zhou and R. Chellappa, "From sample similarity to ensemble similarity: 
probabilistic distance measures in reproducing kernel hilbert space," Pattern 
Analysis and Machine Intelligence, IEEE Transactions on, vol. 28, no. 6, pp. 
917-929, June 2006. 

[217] J. D. Wichard, "Model selection in an ensemble framework," in Proceedings of 
International Joint Conference on Neural Networks, Vancouver, Canada, 2006. 

[218] C. Atkeson, A. Moore, and S. Schaal, "Locally weighted learning," Al Review, 
vol. 11, pp. 11-73 , April 1997. 

[219] W. S. Cleveland and C. L. Loader, Smoothing by Local Regression: Principles 
and Methods. Springer, New York, 1996, pp. 10-49. 



www.manaraa.com

B-26 CHAPTER B j 

_—- | 

[220] S. Schaal, C. G. Atkeson, and S. Vijayakumar, "Scalable techniques from non- i 
parametric statistics for real time robot learning," Applied Intelligence, vol. 17, 
no. 1, pp. 49 -60 , July 2002. \ 

[221] V. Toropov, U. Schramm, A. Sahai, R. Jones, and T. Zeguer, "Design opti
mization and stochastic analysis based on the moving least squares method," i 
in Proceedings of the 6th World Congress of Structural and Multidisciplinary 
Optimization, Rio de Janeiro, 2005. 

[222] S. Klanke, S. Vijayakumar, and S. Schaal, "A library for locally weighted pro
jection regression,"./. Mach. Learn. Res., vol. 9, pp. 623—626, 2008. 

[223] J. P. Kleijnen and W. v. Beers, "Monotonicity-preserving bootstrapped j 
kriging metamodels for expensive simulations," Tilburg University, Open , 
Access publications from Tilburg University RePEc:dgr:kubcen:200975, 2009- [ 
[Online]. Available: http://ideas.repec.org/p/ner/tilbur/urnnbnnlui 12-3559630-
html 

[224] D. Deschrijver, T. Dhaene, and D. De Zutter, "Robust parametric macromod-
cling using multivariate orthonormal vector fitting," IEEE Transactions on Mi
crowave Theory and Techniques, vol. 56, no. 7, pp. 1661—1667, Jul. 2008. i 

i 

[225] F. Wang and Q.-J. Zhang, "Knowledge-based neural models for microwave de
sign," Microwave Theory and Techniques, IEEE Transactions on, vol. 45 , no. 12, | 
pp . 2333-2343 , Dec. 1997. j 

[226] D. Echeverria and C. Tong, "Towards multilevel optimization: Spacemapping 
and manifoldmapping," Lawrence Livermore National Laboratory, UCRL-TR- [ 
223288, Tech. Rep., 2006. ' 

[227] P. Hemker and D. Echeverria, "A trust-region strategy for manifold-mapping 
optimization," Computational Physics, vol. 224, no. 1, pp. 464—475, 2007. 

i 

[228] P. Watson, K. Gupta, and R. Mahajan, "Application of knowledge-based artifi- j 
cial neural network modeling to microwave components," International Journal j 
ofRF and Microwave CAE, vol. 9, no. 3, pp. 254-260 , May 1999. I 

[229] J. W. Bandler, R. M. Biernacki, S. H. Chen, P. A. Grobelny, and R. H. Hemmcrs, ( 

"Space mapping technique for electromagnetic optimization," IEEE Transac
tions on Microwave Theory and Techniques, vol. 42, no. 12, pp. 2536—2544, 
Aug. 1994. | 

[230] L. Zhang, J. Xu, M. C. E. Yagoub, R. Ding, and Q. J. Zhang, "Efficient ana
lytical formulation and sensitivity analysis of neuro-space mapping for nonlin- ( 
ear microwave device modeling," IEEE Transactions on Microwave Theory and 
Techniques, vol. 53 , no. 9, pp. 2752--2767', Sep. 2005. / 

http://ideas.repec.org/p/ner/tilbur/urnnbnnlui


www.manaraa.com

BIBLIOGRAPHY B-27 

[231] J. Bandler, M. Ismail, J. Rayas-Sanchez, and Q. Zhang, "Neuromodeling of 
microwave circuits exploiting space mapping technology," in Proc. IEEE MTT-
S International Microwave Symposium Digest, vol. 1, 1999, pp. 149—152. 

[232] A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from 
incomplete data via the EM Algorithm," Journal of the Royal Statistical Society. 
Series B (Methodological), vol. 39, no. 1, pp. 1—38, 1977. 

[233] A. J. Booker, J. E. Dennis, P. D. Frank, D. B. Serafini, V. Torczon, and M. W. 
Trosset, "A rigorous framework for optimization of expensive functions by sur
rogate," Structural and Multidisciplinary Optimization, vol. 17, no. 1, pp. 1 — 13, 
1999. 

[234] L. Zhang, Y Cao, S. Wan, H. Kabir, and Q.-J. Zhang, "Parallel automatic model 
generation technique for microwave modeling," in IEEE/MTT-S International 
Microwave Symposium, Jun. 2007, pp. 103—106. 

[235] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, P. Sommerlad, 
and M. Stal, Pattern-Oriented Software Architecture, Volume 1: A System of 

. Patterns. John Wiley & Sons, August 1996. 

[236] C. W. Krueger, "Software reuse," ACM Computing Survey, vol. 24, no. 2, pp. 
131-183 , 1992. 

[237] I. Sommerville, Software Engineering, 8th ed. Addison Wesley, 2006. 

[238] S. Wagner and F. Deissenboeck, "Abstractness, specificity, and complexity in 
software design," in ROA '08: Proceedings of the 2nd international workshop 
on The role of abstraction in software engineering. New York, NY, USA: 
ACM, 2008, pp. 3 5 ^ 2 . 

[239] K. Crombecq, D. Gorissen, L. D. Tommasi, and T Dhaene, "A novel sequen
tial design strategy for global surrogate modeling," in Proceedings of the 41th 
Conference on Winter Simulation, Austin, TX, Dec. 2009. 

[240] L. Wang, S. Shan, and G. G. Wang, "Mode-pursuing sampling method for 
global optimization on expensive black-box functions," Engineering Optimiza
tion, vol. 36, no. 4, pp. 419 -438 , 2004. 

[241] D. Gorissen, I. Couckuyt, and T. Dhaene, "A linear reference model (LRM) 
metric for model selection and seqiiential design," University of Antwerp, Tech. 
Rep., 2009. 

[242] K. Ye, W. Li, and A. Sudjianto, "Algorithmic construction of optimal symmetric 
Latin hypercube designs," Journal of Statistical Planning and Inference, vol. 90, 
pp. 145-159 ,2000 . 



www.manaraa.com

B-28 CHAPTER B 

[243] G. Rerrnen, "Efficient approximation of black-box functions and Pareto sets, 
Ph.D. dissertation, Tilburg University, Tilburg, The Netherlands, 2009. 

[244] B. Husslage, G. Rennen, E. R. van Dam, and D. den Hertog, "Space-filling 
Latin hypercube designs for computer experiments," Tilburg University, Center 
for Economic Research, Tech. Rep. 18, 2006. 

[245] J.-P. Chiles and P. Delfiner, Geostatistics: modeling spatial uncertainty. Wiley, 
New York, 1999. 

[246] H. Wackernagel, Multivariate geostatistics: an introduction with applications-
Springer-Verlag, Berlin, 2003. 

[247] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements 
od Reusable Object-Oriented Software, ser. Addison-Wesley Professional Com
puting Series. New York, NY: Addison-Wesley Publishing Company, 1995. 

[248] J. Mockus, V. Tiesis, and A. Zilinskas, "The application of Bayesian methods 
for seeking the extremum," Towards Global Optimization, vol. 2, pp. 117—129, 
1978. 

[249] D. R. Jones, "A taxonomy of global optimization methods based on response 
surfaces," Global Optimization, vol. 2 1 , pp. 345—383, 2001 . 

[250] M. Sasena, "Flexibility and efficiency enhancements for constrainted global de
sign optimization with kriging approximations," Ph.D. dissertation, University 
of Michigan, 2002. 

[251] D. den Hertog, J. Kleijnen, and A. Siem, "The correct kriging variance estimated 
by bootstrapping," Operational Research Society, vol. 57, pp. 400—409, 2006. 

[252] G. Matheron, "Principles of geostatistics," Economic Geology, vol. 58, pp-
1246-1266, 1963. 

[253] N. A. C. Cressie, Statistics for spatial data. John Wiley & Sons, 1993. 

[254] M. C. Kennedy and A. O'Hagan, "Predicting the output from complex computer 
code when fast approximations are available," Biometrika, vol. 87, pp. 1—13, 
2000. 

[255] A. I. Forrester, A. Sobester, and A. J. Keane, "Multi-fidelity optimization via 
surrogate modelling," Royal Society, vol. 463 , no. 2088, pp. 3251—3269, 2007. 

[256] A. Sobester, S. J. Leary, and A. J. Keane, "On the design of optimization strate
gies based on global response surface approximation models," Global Optimiza
tion, vol. 33 , no. 1, pp. 31-59 , 2005. 



www.manaraa.com

BIBLIOGRAPHY B-29 

[257] A. Sobester, S. J. Leary, and A. J. Keane, "A parallel updating scheme for ap
proximating and optimizing high fidelity computer simulations," Structural and 
Multidisciplinary Optimization, vol. 27, pp. 371—383, 2004. 

[258] W. Ponweiser, T. Wagner, and M. Vincze, "Clustered multiple generalized ex
pected improvement: A novel infill sampling criterion for surrogate models," in 
Congress on Evolutionary Computation, 2008. 

[259] J. Knowles, "ParEGO: A hybrid algorithm with on-line landscape approxima
tion for expensive multiobjective optimization problems," IEEE Transactions on 
Evolutionary Computation, vol. 10, no. 1, pp. 50—66, 2006. 

[260] A. J. Keane, "Statistical improvement criteria for use in multiobjective design 
optimization f AIAA Journal, vol. 44, no. 4, pp. 879—891, 2006. 

[261] I. Voutchkov and A. Keane, "Multiobjective Optimization using Surrogates," 
in Adaptive Computing in Design and Manufacture 2006. Proceedings of the 
Seventh International Conference, I. Parmee, Ed., Bristol, UK, April 2006, pp. 
167-175. 

[262] J. Knowles and H. Nakayama, "Meta-modeling in multiobjective optimiza
tion," in Multiobjective Optimization: Interactive and Evolutionary Approaches. 
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 245-284 . 

[263] R. Regis and C. Shoemaker, "Constrained global optimization of expensive 
black box functions using radial basis functions," Journal of Global Optimiza
tion, vol. 3 1 , no. l , p p . 153—171, January 2005. 

[264] S. Shan and G. G. Wang, "An efficient pareto set identification approach for 
multi-objective optimization on black-box functions," Mechanical Design, vol. 
127, no. 5, pp. 866-874 , 2005. 

[265] R. Vilalta and Y. Drissi, "A perspective view and survey of meta-learning," Artif 
Intell. Rev., vol. 18, no. 2, pp. 7 7 - 9 5 , 2002. 

[266] J. F. M. Barthelemy and R. T. Haftka, "Approximation concepts for optimum 
structural design a review," Structural and Multidisciplinary Optimization, 
vol. 5, no. 3, pp. 129-144, Sep. 1993. 

[267] D. Gorissen, L. De Tommasi, J. Croon, and T. Dhaene, "Automatic model type 
selection with heterogeneous evolution: An application to RF circuit block mod
eling," in Proceedings of the IEEE Congress on Evolutionary Computation, 
WCCI 2008, Hong Kong, 2008. 

[268] T. Lee, The Design of CMOS Radio-Frequency Integrated Circuits (Second Edi
tion). Cambridge University Press, 2003. 



www.manaraa.com

B-30 CHAPTER B 

[269] J. Suykens, T. V Gestel, J. D. Brabanter, B. D. Moor, and J. Vandewalle, Least 
Squares Support Vector Machines. Singapore: World Scientific Publishing Co., 
Pte, Ltd., 2002. 

[270] S. N. Lophaven, H. B. Nielsen, and J. Sendergaard, "Aspects of the matlab tool
box DACE," Informatics and Mathematical Modelling, Technical University of 
Denmark, DTU, Richard Petersens Plads, Building 321 , DK-2800 Kgs. Lyngby, 
Tech. Rep., 2002. 

[271] D. MacKay, "Bayesian model comparison and backprop nets," in Advances in 
Neural Information Processing Systems 4, J. E. Moody, S. J. Hanson, and R. P 
Lippmann, Eds. Morgan Kaufmann, Dec. 1992, pp. 839—846. 

[272] F. Foresee and M. Hagan, "Gauss-Newton approximation to bayesian regular
ization," in Proceedings of the 1997 International Joint Conference on Neural 
Networks, Jun. 1997, pp. 1930-1935. 

[273] D. Gorissen, "Heterogeneous evolution of surrogate models," Master 's thesis, 
Master of Al, Katholieke Universiteit Leuven (KUL), 2007. 

[274] W. Hendrickx, D. Gorissen, and T. Dhaene, "Grid enabled sequential design and 
adaptive metamodeling," in WSC '06: Proceedings of the 37th Conference on 
Winter simulation. Winter Simulation Conference, 2006, pp . 872—881. 

[275] K. Crombecq, I. Couckuyt, E. Laermans, and T. Dhaene, "A novel hybrid active 
learning strategy for nonlinear regression," in BeneLearn, 2009. 

[276] I. Foster and C. Kesselman, The Grid 2: Blueprint for a New Computing In
frastructure. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 
2003. 

[277] D. Anderson and G. Fedak, "The computational and storage potential of volun
teer computing," in Cluster Computing and the Grid, 2006. CCGRID 06. Sixth 
IEEE International Symposium on, vol. 1, 16-19 May 2006, pp. 73—80. 

[278] F. Berman, G. Fox, and A. Hey, Grid Computing: Making The Global Infras
tructure a Reality, Unknown, Ed. John Wiley & Sons, 2003. 

[279] K. Hafner and M. Lyon, Where wizards stay up late : the origins of the Internet 
/Katie Hafner and Matthew Lyon. Simon & Schuster, New York :, 1996. 

[280] I. Foster, C. Kesselman, and S. Tuecke, "The Anatomy of the Grid: Enabling 
Scalable Virtual Organizations," Lecture Notes in Computer Science, vol. 2150, 
2001 . 



www.manaraa.com

BIBLIOGRAPHY B-31 

[281] A. Natrajan, A. Nguyen-Tuong, M. Humphrey, M. Herrick, B. P. Clarke, and 
A. S. Grimshaw, "The legion grid portal." Concurrency and Computation: Prac
tice and Experience, vol. 14, no. 13-15, pp. 1365—1394,2002. 

[282] M. L. Bote-Lorenzo, Y A. Dimitriadis, and E. Gomez-Sanchez, "Grid charac
teristics and uses: A grid definition." in European Across Grids Conference, 
2003, pp. 291 -298 . 

[283] I. Foster, Y Zhao, I. Raicu, and S. Lu, "Cloud computing and grid computing 
360-degree compared," in Grid Computing Environments Workshop, 2008. GCE 
'08, 2008, pp. 1-10. 

[284] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, 
G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, "Above the 
clouds: A Berkeley view of cloud computing," EECS Department, University 
of California, Berkeley, Tech. Rep. UCB/EECS-2009-28, Feb 2009. 

[285] J. P. C. Kleijnen and B. Annink, "Vector computers, Monte Carlo simulation 
and regression analysis: An introduction," Management Science, vol. 38, no. 2, 

. pp. 170-181 , 1992. 

[286] D. Abramson, A. Lewis, T. Peachey, and C. Fletcher, "An automatic design opti
mization tool and its application to computational fluid dynamics," in Proceed
ings of the 2001 ACM/IEEE conference on Supercomputing (CDROM), 2001 , 
pp. 2 5 - 2 5 . 

[287] R. Buyya and S. Venugopal, "The gridbus toolkit for service oriented grid 
and utility computing: An overview and status report," in Proceedings of the 
First IEEE International Workshop on Grid Economics and Business Models 
(GECON 2004), 2004, pp. 19-36. 

[288] M. H. Eres, G. E. Pound, Z. Jiao, J. L. Wason, F. Xu, A. J. Keane, and S. J. Cox, 
"Implementation and utilisation of a grid-enabled problem solving environment 
in matlab." Future Generation Comp. Syst., vol. 2 1 , no. 6, pp. 920-929 , 2005. 

[289] A. Stricgel, M. Shorts, E. Stuntebeck, D. Salyers, and J. A. Izaguirre, "GIPSE: 
A tool for streamling management aspects of the grid for simulation-based re
search," Univ. of Notre Dame, Tech. Rep., 2004. 

[290] M. Yarrow, K. M. McCann, R. Biswas, and R. F. V. der Wijngaart, "An advanced 
user interface approach for complex parameter study process specification on 
the information power grid," in GRID '00: Proceedings of the First IEEE/ACM 
International Workshop on Grid Computing. London, UK: Springer-Verlag, 
2000, pp. 146-157. 



www.manaraa.com

B-32 CHAPTERS 

[291] H.-K. Ng, D. Lim, Y.-S. Ong, B.-S. Lee, L. Freund, S. Parvez, and B. Send-
hoff, "A multi-cluster grid enabled evolution framework for aerodynamic airfoil 
design optimization." in ICNC (2), 2005, pp . 1112-1121 . 

[292] H.-K. Ng, Y.-S. Ong, T. Hung, and B.-S. Lee, "Grid enabled optimization." i*1 

EGC, 2005, pp. 296-304 . 

[293] S. Kodiyalam, R. J. Yang, and G. Lei, "Highperformance computing and surro
gate modeling for rapid visualization with multidisciplinary optimization," AIAA 
journal, vol. 42, no. 11, pp. 2347-2354 , 2004. 

[294] W E. Biles and J. P. C. Kleijnen, "International collaborations in web-based 
simulation: a focus on experimental design and optimization," in WSC '05-
Proceedings of the 37th conference on Winter simulation. Winter Simulation 
Conference, 2005, pp. 218-222 . 

[295] D. Erwin, "Unicore - a grid computing environment," Concurrency-Practice 
andExperience, vol. 14, pp. 1395—1410,2002. 

[296] E. Laure, S. Fisher, A. Frohner, C. Grandi, P. Kunszt, A. Krenek, O. Mulmo, 
F. Pacini, F. Prelz, J. White, M. Barroso, P. Buni, F. Hemmer, A. D. Megli°> 
and A. Edlund, "Programming the grid using glitc," Computational Methods W 
Science and Technology, vol. 12, no. 1, pp. 33—45, 2006. 

,, 
[297] D. P. Anderson, "Boinc: A system for public-resource computing and storage, 

in GRID '04: Proceedings of the 5th IEEE/ACM International Workshop on 
Grid Computing. Washington, DC, USA: IEEE Computer Society, 2004, pP-
4-10 . 

[298] W. Gentzsch, "Sun grid engine: Towards creating a compute power grid," in 

Proceedings of the 1st International Symposium on Cluster Computing and the 
Grid. Washington, DC, USA: IEEE Computer Society, 2001 , p . 35. 

[299] J. L. Vazquez-Poletti, E. Huedo, R. S. Montcro, and I. M. Llorente, "Coordi
nated harnessing of the IRISGrid and EGEE testbeds with GridWay," J. Parallel 
Distrib. Comput., vol. 66, no. 5, pp. 763—771, 2006. 

[300] M. Massie, "The ganglia distributed monitoring system: design, implementa
tion, and experience," Parallel Computing, vol. 30, no. 7, pp. 817—840, July 
2004. 

[301] F. Montesi, C. Guidi, R. Lucchi, and G. Zavattaro, "JOLIE: a Java orchestration 
language interpreter engine," Electronic Notes in Theoretical Computer Science, 
vol. 181, pp. 19 — 33, 2007, combined Proceedings of the Second International 



www.manaraa.com

BIBLIOGRAPHY B-33 

Workshop on Coordination and Organization (CoOrg 2006) and the Second In
ternational Workshop on Methods and Tools for Coordinating Concurrent, Dis
tributed and Mobile Systems (MTCoord 2006). 

[302] A. J. Keane and P. B. Nair, "Problem solving environments in aerospace design," 
Advances in Engineering Software, vol. 32, no. 6, pp. 477 — 487, 2001. 

[303] J. Aernouts, J. Soons, and J. Dirckx, "Quantification of tympanic membrane 
elasticity parameters from in situ point indentation measurements: Validation 
and preliminary study," Flearing Research, vol. In press, 2009. 

[304] R. Dawkins, The extended phenotype. Oxford, 1989. 

[305] P. Moscato and C. Cotta, "Memetic algorithms," in Optimization Techniques in 
Engineering. Springer-Verlag, 2004, pp. 53—85. 

[306] D. Fogel, "Nils Barricelli - artificial life, coevolution, self-adaptation," IEEE 
Computational Intelligence Magazine, vol. 1, no. 1, pp. 41—45, Feb. 2006. 

[307] D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learn
ing. Addison-Wesley Professional, January 1989. 

[308] S. F. Smith, "A learning system based on genetic adaptive algorithms," Ph.D. 
dissertation, University of Pittsburgh Pittsburgh, PA, USA, 1980. 

[309] N. L. Cramer, "A representation for the adaptive generation of simple sequential 
programs," in Proceedings of the 1st International Conference on Genetic Al
gorithms. Mahwah, NJ, USA: Lawrence Erlbaum Associates, Inc., 1985, pp. 
183-187. 

[310] D. Dickmanns, J. Schmidhuber, and A. Winklhofer, " Der gcnctischc Algorith-
mus: Eine Implementierung in Prolog. Fortgeschrittencnpraktikum, Institut fur 
Informatik, Lehrstuhl Prof. Radig, Technische Universitat Munchen," 1987. 

[311] J. R. Koza, Genetic Programming: On the programming of Computers by Means 
of Natural Selection. MIT Press, Cambridge, Mass., 1992. 

[312] J. Heitkoetter and D. eds. Beasley, "The Hitch-Hiker's Guide to Evo
lutionary Computation: A list of Frequently Asked Questions (FAQ), 
USENET: comp.ai.genetic." Available via anonymous FTP from 
rtfm.mit.edu/pub/usenct/news.answers/ai-faq/genctic/, 2 0 0 i . 

[313] F. Xiong, Y Xiong, W. Chen, and S. Yang, "Optimizing Latin hypercube design 
for sequential sampling of computer experiments," Engineering Optimization, 
vol. 4 1 , no. 8, pp. 793-810, 2009. 

http://rtfm.mit.edu/pub/usenct/news.answers/ai-faq/genctic/


www.manaraa.com

B-34 CHAPTER B 

[314] J. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor: Univer
sity of Michigan Press, 1975. 

[315] G. Rudolph, "Convergence analysis of canonical genetic algorithms," Neural 
Networks, IEEE Transactions on, vol. 5, no. 1, pp. 96—101, Jan. 1994. 

[316] P. Merz and B. Freisleben, "A comparison of memetic algorithms, tabu search, 
and ant colonies for the quadratic assignment problem," in Evolutionary Com
putation, 1999. CEC 99. Proceedings of the 1999 Congress on, vol. 3, 6-9 July 
1999. 

[3 17] Z. Michalewicz, Genetic algorithms + data structures = evolution programs 
(3rded.). London, UK: Springer-Verlag, 1996. 

[318] R. Poli, "Exact schema theory for genetic programming and variable-length ge
netic algorithms with one-point crossover," Genetic Programming and Evolv-
able Machines, vol. 2, no. 2, pp. 123—163, 2001 . 

[319] S. Su and D. Zhan, "New genetic algorithm for the fixed charge transportation 
problem," in Proc. of The Sixth World Congress on Intelligent Control and Au
tomation, Dalian, China, vol. 2, Oct. 2006, pp. 7039—7043. 

[320] C.-H. Hsu, "Optimizing beam pattern of adaptive linear phase array antenna us
ing local genetic algorithm," in Antennas and Propagation Society International 
Symposium, 2005 IEEE, vol. IB, 3-8 July 2005, pp. 315-318vol . IB. 

[321] J. Zhang, Y Zhang, and R. Gao, "Genetic algorithms for optimal design of 
vehicle suspensions," in IEEE International Conference on Engineering of In
telligent Systems, Islamabad, Pakistan, Jan. 2006, pp. 1—6. 

[322] N. Siu, E. Elghoneimy, Y Wang, W. Gruver, M. Fleetwood, and D. Ko-
tak, "Rough mill component scheduling: heuristic search versus genetic algo
rithms," in IEEE International Conference on Systems, Man and Cybernetics, 
The Hague, Netherlands, vol. 5, Oct. 2004, pp. 4226-4231 . 

[323] J. Clegg, J. Dawson, S. Porter, and M. Barley, "The use of a genetic algorithm 
to optimize the functional form of a multi-dimensional polynomial fit to experi
mental data," in Proc. IEEE Congress on Evolutionary Computation, Edinburgh, 
Scotland, vol. 1, Sep. 2005, pp. 928-934. 

[324] R. Tanese, "Distributed genetic algorithms," in Proceedings of the 3rd Interna
tional Conference on Genetic Algorithms. San Francisco, CA, USA: Morgan 
Kaufmann Publishers Inc., 1989, pp. 434-439 . 

[325] D. Lim, Y.-S. Ong, Y Jin, B. Sendhoff, and B.-S. Lee, "Efficient hierarchical 
parallel genetic algorithms using grid computing," Future Gener. Comput. Syst., 
vol. 23 , no. 4, pp. 658-670, 2007. 



www.manaraa.com

BIBLIOGRAPHY B-35 

[326] M. Nowostawski and R. Poli, "Parallel genetic algorithm taxonomy," in 
Knowledge-Based Intelligent Information Engineering Systems, 1999. Third In
ternational Conference,?)! Aug. - l Sept. 1999, pp. 88—92. 

[327] D. Whitley, S. Rana, and R. B. Heckendorn, "The island model genetic algo
rithm: On separability, population size and convergence," Journal of Computing 
and Information Technology, vol. 7, no. 1, pp. 33—47, 1999. 

[328] T. Back, Evolutionary algorithms in theory and practice: evolution strategies, 
evolutionary programming, genetic algorithms. Oxford, UK: Oxford Univer
sity Press, 1996. 

[329] V. S. Gordon, K. Mathias, and D. Whitley, "Cellular genetic algorithms as func
tion optimizers: locality effects," in SAC '94: Proceedings of the 1994 ACM 
symposium on Applied computing. New York, NY, USA: ACM Press, 1994, 
pp. 2 3 7 - 2 4 1 . 

[330] S. Wright, "The roles of mutation, inbreeding, crossbreeding, and selection in 
evolution." in Proceedings of 6th International Congress on Genetics, 1932, pp. 
356-366 . 

[331] B. Sareni and L. Krahenbuhl, "Fitness sharing and niching methods revisited." 
IEEE Trans. Evolutionary Computation, vol. 2, no. 3, pp. 97—106, 1998. 

[332] J. Sprave, "Zellulare evolutionare algorithmen zur parameteroptimierung," in 
Informatik in den biowissenschaften. Springer Informatik aktuell, 1993, pp. 
111-120. 

[333] K.-J. Kim, J.-O. Yoo, and S.-B. Cho, "Robust inference of bayesian networks 
using speciated evolution and ensemble." in ISMLS, 2005, pp. 92—101. 

[334] K. Stanley and R. Miikkulainen, "Evolving neural networks through augmenting 
topologies," Evolutionary Computation, vol. 10, no. 2, pp. 99—127, 2002. 

[335] M. Moore, "An accurate and efficient parallel genetic algorithm to schedule 
tasks on a cluster," in Parallel and Distributed Processing Symposium, 2003. 
Proceedings. International, 22-26 April 2003, p . 5pp. 

[336] K. Belkadi, M. Gourgand, and M. Benyettou, "Parallel genetic algorithms with 
migration for the hybrid flow shop scheduling problem," Journal of Applied 
Mathematics and Decision Sciences, vol. 2006, pp. Article ID 65 746, 17 pages, 
2006. 

[337] K. C. Giannakoglou, M. K. Karakasis, and I. C. Kampolis, "Evolutionary al
gorithms with surrogate modeling for computationally expensive optimization 
problem," in Proceedings of ERCOFTAC 2006 Design Optimization Interna
tional Conference, Gran Canaria, Spain, 2006. 



www.manaraa.com

B-36 CHAPTER S 

[338] M. Buonanno and D. Mavris, "Aerospace vehicle concept selection using paral
lel, variable fidelity genetic algorithms," in Proceedings of 10th AIAA/ISSMO 
Multidisciplinary Analysis and Optimization Conference, Albany, New York, 
2004. 

[339] J. Alander, "An indexed bibliography of distributed genetic algorithms, tech-
rep. no. 94-1-para," University of Vaasa, Finland, Tech. Rep., 1996. 

[340] Z. Konfrst, "Parallel genetic algorithms: advances, computing trends, apph-
cations and perspectives," in Parallel and Distributed Processing Symposium, 
2004. Proceedings. 18th International, 26-30 April 2004, p. 162. 

[341] G. M. Laslett, "Kriging and splines - an empirical-comparison of their predictive 
performance in some applications," Journal of the American Statistical Associ
ation, vol. 89, no. 426, pp. 391-400, 1994. 

[342] E. Vladislavleva, G. Smits, and D. den Hertog, "Order of nonlinearity as a com
plexity measure for models generated by symbolic regression via Pareto ge~ 
netic programming," Evolutionary Computation, IEEE Transactions on, vol. 13, 
no. 2, pp. 333-349, April 2009. 

[343] M. Streeter and L. Becker, "Automated discovery of numerical approximation 
formulae via genetic programming," Genetic Programming and Evolvable Ma
chines, vol. 4, no. 3 , pp. 255-286, 2003. 

[344] Y.-S. Yeun, W.-S. Ruy, Y.-S. Yang, andN.-J . Kim, "Implementing linear models 
in genetic programming." IEEE Trans. Evolutionary Computation, vol. 8, no. 6, 
pp. 542-566, 2004. 

[345] P.-W Chen, J.-Y. Wang, and H.-M. Lee, "Model selection of SVMs using GA 
approach," in Neural Networks, 2004. Proceedings. 2004 IEEE International 
Joint Conference on, vol. 3, 25-29 July 2004, pp. 2035-2040. 

[346] S. Lessmann, R. Stahlbock, and S. Crone, "Genetic algorithms for support vec
tor machine model selection," in Proceedings of the International Joint Confer
ence on Neural Networks, 2006. IJCNN '06., 16-21 July 2006, pp. 3063-3069-

[347] S. Tomioka, S. Nisiyama, and T. Enoto, "Nonlinear least square regression by 
adaptive domain method with multiple genetic algorithms," IEEE Transactions 
on Evolutionary Computation, vol. 11, no. 1, pp. 1—16, February 2007. 

[348] F. Friedrichs and C. Igel, "Evolutionary tuning of multiple svm parameters.' 
Neurocomputing, vol. 64, pp. 107—117, 2005. 

[349] C. Zhang, H. Shao, and Y. Li, "Particle swarm optimisation for evolving arti
ficial neural network," in Systems, Man, and Cybernetics, 2000 IEEE Interna
tional Conference on, vol. 4, 8-11 Oct. 2000, pp. 2487-2490. 



www.manaraa.com

BIBLIOGRAPHY B-37 

[350] X. Yao, "Evolving artificial neural networks," Proceedings of the IEEE, vol. 87, 
no. 9, pp. 1423-1447, Sept. 1999. 

[351] X. Yao and Y. Xu, "Recent advances in evolutionary computation." Journal of 
Computer Science and Technology, vol. 2 1 , no. 1, pp. 1—18, 2006. 

[352] A. C. Keys, L. P. Rees, and A. G. Greenwood, "Performance measures for selec
tion of metamodels to be used in simulation optimization," Decision Sciences, 
vol. 33 , pp. 31 - 58, Oct. 2007. 

[353] Y. Jin, M. Olhofer, and B. Sendhoff, "A framework for evolutionary optimiza
tion with approximate fitness functions." IEEE Trans. Evolutionary Computa
tion, vol. 6, no. 5, pp. 481-494 , 2002. 

[354] R. Regis and C. Shoemaker, "Local function approximation in evolutionary al
gorithms for the optimization of costly functions." IEEE Trans. Evolutionary 
Computation, vol. 8, no. 5, pp. 490—505, 2004. 

[355] I. Paenke, J. Branke, and Y. Jin, "Efficient search for robust solutions by means 
of evolutionary algorithms and fitness approximation." IEEE Trans. Evolution
ary Computation, vol. 10, no. 4, pp. 405—420, 2006. 

[356] M. T. M. Emmerich, K. Giannakoglou, and B. Naujoks, "Single- and multiob
jective evolutionary optimization assisted by gaussian random field metamod
els." IEEE Trans. Evolutionary Computation, vol. 10, no. 4, pp. 421—439, 2006. 

[357] Y.-S. Ong, P. Nair, and K. Lum, "Max-min surrogate-assisted evolutionary al
gorithm for robust design," Evolutionary Computation, IEEE Transactions on, 
vol. 10, no. 4, pp. 392-404 , Aug. 2006. 

[358] E. Sanchez, S. Pintos, and N. Queipo, "Toward an optimal ensemble of kernel-
based approximations with engineering applications," in In Proceedings of the 
International Joint Conference on Neural Networks, 2006. IJCNN '06., 2006, 
p p . 2 1 5 2 - 2 1 5 8 . 

[359] Y B., R. El-Yaniv, and K. Luz, "Online choice of active learning algorithms," 
Journal of Machine Learning Research, vol. 5, pp. 255—291, 2004. 

[360] H. J. Escalante, M. Montcs, and E. Sucar, "Particle swarm inodel selection," 
Journal of Machine Learning Research (special issue on model selection), 
vol. 10, pp. 405-440 , 2008. 

[361] H. J. Escalante, M. M. Gomez, and L. E. Sucar, "PSMS for neural networks," in 
The IJCNN 2007 Agnostic vs Prior Knowledge Challenge, 2007, pp. 678 -683 . 



www.manaraa.com

B-38 CHAPTER B 

[362] H. Pei and E. Goodman, "A comparison of cohort genetic algorithms with 
canonical serial and island-model distributed GAs," in Proceedings of the Ge
netic and Evolutionary Computation Conference (GECCO-2001). San Fran
cisco, California, USA: Morgan Kaufmann, 7-11 July 2001 , pp. 501-510. 

[363] G. Rawlins, Ed., Foundations of Genetic Algorithms. San Francisco, CA, USA: 
Morgan Kaufmann Publishers Inc., 1991. 

[364] T. Nakama, "Theoretical analysis of genetic algorithms in noisy environments 
based on a Markov model," in Proceedings of the 10th Annual Conference on 
Genetic and Evolutionary Computation (GECCO 08). New York, NY, USA: 
ACM, 2008, pp. 1001-1008. 

[365] A. Neubauer, "A theoretical analysis of the non-uniform mutation operator for 
the modified genetic algorithm," in Proceedings of the IEEE International Con
ference on Evolutionary Computation, Apr 1997', pp. 93—96. 

[366] X. Qi and F. Palmieri, "Theoretical analysis of evolutionary algorithms with an 
infinite population size in continuous space, part I: Basic properties of selection 
and mutation," IEEE Transactions on Neural Networks, vol. 5, no. 1, pp. 102— 
119, Jan 1994. 

[367] , "Theoretical analysis of evolutionary algorithms with an infinite popu
lation size in continuous space, part II: Analysis of the diversification role of 
crossover," IEEE Transactions on Neural Networks, vol. 5, no. 1, pp. 120—129, 
Jan 1994. 

[368] C. A. Ankenbrandt, "An extension to the theory of convergence and a proof of 
the time complexity of genetic algorithms," in Foundations of Genetic Algo
rithms, 1990, pp. 5 3 - 6 8 . 

[369] J. P. C. Kleijnen, Empirical methods for the analysis of optimization algo
rithms. Springer, 2009, ch. Design and Analysis of Computational Experi
ments: Overview. 

[370] D. Gorissen, I. Couckuyt, K. Crombecq, and T. Dhaene, "Pareto-based multi-
output model type selection," in Proceedings of the 4th International Conference 
on Hybrid Artificial Intelligence (FIAIS 2009), Salamanca, Spain. Springer -
Lecture Notes in Artificial Intelligence, Vol. LNCS 5572, 2009, pp. 442-449 . 

[371] I. Couckuyt, D. Gorissen, H. Rouhani, E. Laermans, and T. Dhaene, "Evolution
ary regression modeling with active learning: An application to rainfall runoff 
modeling," in International Conference on Adaptive and Natural Computing 
Algorithms, vol. LNCS 5495, Sep. 2009, pp. 548-558 . 



www.manaraa.com

BIBLIOGRAPHY B-39 

[372] G. Smits and M. Kotanchek, "Pareto-ffont exploitation in symbolic regression," 
in Genetic Programming Theory and Practice II. Springer, Ann Arbor, USA, 
2004. 

[373] R. Lehmensiek, "Efficient Adaptive Sampling Applied to Multivariate, Multiple 
Output Rational Interpolation Models, with Applications in Electromagnetics-
based Device Modeling," Ph.D. dissertation, University of Stellenbosch, 2001 . 

[374] S. Rogers, M. Aftosmis, S. Pandya, and N . Chaderjian, "Automated CFD pa
rameter studies on distributed parallel computers," in Proc of 16th AIAA Com
putational Fluid Dynamics Conference, Orlando, Florida, 2003. 

[375] R. Gramacy, H. Lee, and W. Macready, "Parameter space exploration with gaus-
sian process trees," in ICML '04: Proceedings of the 21st International Confer
ence on Machine Learning. New York, NY, USA: A C M Press, 2004, p . 45. 

[376] B. Pamadi, P. Covell, P. Tartabini, and K. Murphy, "Aerodynamic characteristics 
and glide-back performance of Langley glide-back booster," in Proceedings of 
22nd Applied Aerodynamics Conference and Exhibit, Providence, Rhode Island, 
2004. 

[377] D. Harrison and D. Rubinfeld, "Hedonic prices and the demand for clean air," 
Journal of Environmental Economics & Management, vol. 5, pp. 81—102, 1978. 

[378] M. Schonlau, "Computer experiments and global optimization," Ph.D. disserta
tion, University of Waterloo, 1997. 

[379] A. I. J. Forrester and D. R. Jones, "Global optimization of deceptive functions 
with sparse sampling," in Proceedings of the AIAA/ISSMO Multidisciplinary 
Analysis and Optimization Conference. AIAA, 2008, p . 15. 

[380] D. Jones, C. Perttunen, and B. Stuckman, "Lipschitzian optimization without 
the Lipschitz constant," Optimization Theory and Applications, vol. 79, no. 1, 
pp. 157-181 , 1993. 

[381] J. Bonnans, J. Gilbert, C. Lemarechal, and C. Sagastizabal, Numerical Opti
mization: Theoretical and Practical Aspects. Springer, 2006. 

[382] Y. Yang and A. Barron, "An asymptotic property of model selection criteria," 
Information Theory, IEEE Transactions on, vol. 44, no. 1, pp. 95—116, Jan 1998. 

[383] X. R. Li and Z. Zhao, "Evaluation of estimation algorithms part I: incomprehcn-
sive measures of performance," IEEE Transactions on Aerospace and Electronic 
Systems, vol. 42, no. 4, pp. 1340-1358, October 2006. 



www.manaraa.com

B-40 CHAPTER B 

[384] J. E. Fieldsend, "Multi-objective supervised learning," in Multiobjective Prob
lem Solvingfrom Nature From Concepts to Applications, ser. Natural Computing 
Series, J. Knowles, D. Corne, and K. Deb, Eds. Springer LNCS, 2008. 

[385] A. M. Molinaro, R. Simon, and R. M. Pfeiffer, "Prediction error estimation: a 
comparison of resampling methods," Bioinformatics, vol. 21 , no. 15, pp. 3 3 0 1 -
3307, 2005. 

[386] W. Zucchini, "An introduction to model selection," Journal of Mathematical 
Psychology, vol. 44, pp. 4 1 - 6 1 , 2000. 

[387] B. Efron, "The estimation of prediction error: Covariance penalties and cross-
validation," Journal of the American Statistical Association, vol. 99, pp. 619— 
632, January 2004. 

[388] Y. Jin and B. Sendhoff, "Pareto-based multiobjective machine learning: An 
overview and case studies," Systems, Man, and Cybernetics, Part C: Applica
tions and Reviews, IEEE Transactions on, vol. 38, no. 3, pp. 397—415, May 
2008. 

[389] M. Ihme, A. L. Marsden, and H. Pitsch, "Generation of optimal artificial neu
ral networks using a pattern search algorithm: Application to approximation of 
chemical systems," Neural Computation, vol. 20, pp. 573—601, 2008. 

[390] C. R. Rao, "Least squares theory using an estimated dispersion matrix and its 
application to measurement of signals," in Proceedings of the Fith Berkeley Sym-
posiu; on Mathematical statistics and Probability, 1967, pp. 355—372. 

[391] Y Matsuyama, "Harmonic competition: a self-organizing multiple criteria opti
mization," IEEE Transactions on Neural Networks, vol. 7, no. 3, pp. 652—668, 
May 1996. 

[392] F. Fenicia, D. P. Solomatine, H. H. G. Savenije, and P. Matgen, "Soft combi
nation of local models in a multi-objective framework," Hydrology and Earth 
System Sciences Discussions, vol. 4, no. 1, pp. 91—123, 2007'. 

[393] D. Gorissen, I. Couckuyt, E. Laermans, and T. Dhaene, "Pareto-based multi-
output metamodeling with active learning," in Proceedings of the 11th Inter
national Conference on Engineering Applications of Neural Networks (EANN 
2009), London, England, 2009. 

[394] I. Mierswa, "Controlling overfitting with multi-objective support vector ma
chines," in GECCO '07: Proceedings of the 9th annual conference on Genetic 
and evolutionary computation. New York, NY, USA: ACM, 2007, pp. 1830— 
1837. 



www.manaraa.com

BIBLIOGRAPHY B-41 

[395] T. Suttorp and C. Igel, "Multi-objective optimization of support vector ma
chines," in Multi-Objective Machine Learning, 2006, pp. 199—220. 

[396] T Furukawa, C. J. K. Lee, and J. Michopoulos, "Regularization for parameter 
identification using multi-objective optimization," in Multi-Objective Machine 
Learning, 2006, pp. 125-149. 

[397] Y Jin, "Pareto-based multi-objective machine learning," in Hybrid Intelligent 
Systems, 2007. HIS 2007. 7th International Conference on, 17-19 Sept. 2007, 
pp. 2 - 2 . 

[398] Y. Jin, Ed., Multi-Objective Machine Learning, scr. Studies in Computational 
Intelligence. Springer, 2006, vol. 16. 

[399] J. E. Fieldsend and S. Singh, "Pareto multiobjective nonlinear regression mod
elling to aid CAPM analogous forecasting," in Neural Networks, 2002. IJCNN 
'02. Proceedings of the 2002 International Joint Conference on, vol. 1, 12-17 

May 2002, pp . 388 -393 . 

[400] G. Liu and V. Kadirkamanathan, "Learning with multi-objective criteria," 
Fourth International Conference on Artificial Neural Networks, pp. 53—58, Jun 
1995. 

[401] J. E. Fieldsend and S. Singh, "Pareto evolutionary neural networks," Neural 
Networks, IEEE Transactions on, vol. 16, no. 2, pp . 338—354, March 2005. 

[402] J. S. Armstrong and F. Collopy, "Error measures for generalizing about fore
casting methods: Empirical comparisons," International Journal ofForecasting, 
vol. 8, no. 1, pp. 69 -80 , June 1 992. 

[403] C. Hcnnig and M. Kutlukaya, "Some thoughts about the design of loss func
tions," REVSTAT- Statistical Journal, vol. 5, pp . 19-39, 2007. 

[404] T. Falas and A.-G. Stafylopatis, "The impact of the error function selection in 
neural network-based classifiers," Neural Networks, 1999. IJCNN '99. Interna
tional Joint Conference on, vol. 3, pp. 1799-1804 vol.3, 1999. 

[405] N. V Queipo, C. J. Arevalo, and S. A. Pintos, "The integration of design of 
experiments, surrogate modeling and optimization for thermoscience research," 
Engineering with Computers, vol. 20, no. 4, pp. 309—315, 2005. 

[406] A. Price, I. Voutchkov, G. Pound, N. Edwards, T. Lenton, and S. Cox, "Mul
tiobjective tuning of grid-enabled earth system models using a non-dominated 
sorting genetic algorithm (NSGA-II) ," in e-Science and Grid Computing, 2006. 
e-Science '06. Second IEEE International Conference on, Dec. 2006, pp. 117— 
117. 



www.manaraa.com

B-42 CHAPTER B 

[407] L. Xingtao, L. Qing, Y Xujing, Z. Weigang, and L. Wei, "Multiobjective opti
mization for crash safety design of vehicles using stepwise regression model,' 
Structural and Multidisciplinary Optimization, vol. 35, no. 6, pp . 561—569, June 
2008. 

[408] N. M. Sheriffa, N. Guptab, R. Velmuruganc, and N. Shanmugapriyand, "Opti
mization of thin conical frusta for impact energy absorption," Thin-Walled Struc
tures, vol. 46, no. 6, pp. 653—666, 2008. 

[409] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiob
jective genetic algorithm: NSGA-II," Evolutionary Computation, IEEE Trans
actions on, vol. 6, no. 2, pp. 182—197, 2002. 

[410] K. Deb and P. Nain, "An evolutionary multi-objective adaptive meta-modeling 
procedure using artificial neural networks." in Evolutionary Computation in Dy
namic and Uncertain Environments, ser. Studies in Computational Intelligence, 
S. Yang, Y.-S. Ong, and Y Jin, Eds. Springer, 2007, vol. 5 1 , pp. 297-322 . 

[411] K. Vasanth Kumar, K. Porkodi, and F. Rocha, "Comparison of various error 
functions in predicting the optimum isotherm by linear and non-linear regres
sion analysis for the sorption of basic red 9 by activated carbon," Journal of 
hazardous materials, vol. 150, pp. 158—165, 2008. 

[412] A. Mullur and A. Messac, "Metamodeling using extended radial basis functions: 
a comparative approach," Eng. with Comput, vol. 2 1 , no. 3, pp. 203—217, 2006. 

[413] M. N0rgaard, O. Ravn, L. Hansen, and N. Poulsen, "The NNSYSID toolbox," 
in IEEE International Symposium on Computer-Aided Control Sysstems Design 
(CACSD), Dearborn, Michigan, USA, 1996, pp. 374-379 . 

[414] K. Sastry, D. Goldberg, and M. Pelikan, "Limits of scalability of multiobjective 
estimation of distribution algorithms," in Evolutionary Computation, 2005. The 
2005 IEEE Congress on, vol. 3, 2-5 Sept. 2005, pp. 2217-2224Vol.3. 

[415] N. Sangkawelert and N. Chaiyaratana, "Diversity control in a multi-objective 
genetic algorithm," in Evolutionary Computation, 2003. CEC '03. The 2003 
Congress on, vol. 4, 8-12 Dec. 2003, pp. 2704-2711 Vol.4. 

[416] J. Mehnen, T. Wagner, and G. Rudolph, "Evolutionary optimization of dy
namic multi-objective test functions," in Digital Proceedings of the 3° Workshop 
Italiano di Vita Artificiale e delta 2a Giornata di Studio Italiana sul Calcolo 
Evoluzionistico, S. Cagnoni and L. Vanneschi, Eds. LabSEC — Laboratorio 
Simulazioni di fenomeni Socio Economici Complessi, September 2006. 



www.manaraa.com

BIBLIOGRAPHY B-43 

[417] G. Agrawal, K. Lewis, K. Chugh, C Huang, S. Parashar, C L., and Bloebaum, 
"Intuitive visualization of pareto frontier for multi-objective optimization in n-
dhnensional performance space," in 10th AIAA/ISSMO Multidisciplinary Anal
ysis and Optimization Conference, Albany, NY, AIAA-2004-4434., 2004. 

[418] M. Jensen, "Reducing the run-time complexity of multiobjective EAs: The 
NSGA-II and other algorithms," Evolutionary Computation, IEEE Transactions 
on, vol. 7, no. 5, pp. 503 -515 , Oct. 2003. 

[419] Y. Jin, T Okabe, and B. Sendhoff, "Dynamic Weighted Aggregation for 
Evolutionary Multi-Objective Optimization: Why Does It Work and H o w ? " 
in Proceedings of the Genetic and Evolutionary Computation Conference 
(GECCO'2001), L. Spcctor, E. D. Goodman, A. Wu, W. Langdon, H.-M. Voigt, 
M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, and E. Burke, Eds. San 
Francisco, California: Morgan Kaufmann Publishers, 2001 , pp. 1042—1049. 

[420] A. Schwaighofer and V Tresp, "Transductive and inductive methods for approx
imate gaussian process regression," in NIPS, 2002, pp. 953—960. 

[421] C Liu and Y Wang, "Dynamic multi-objective optimization evolutionary algo
rithm," in Natural Computation, 2007. ICNC 2007. Third International Confer
ence on, vol. 4, 24-27 Aug. 2007, pp. 456-459 . 

[422] I. Hatzakis and D. Wallace, "Dynamic multi-objective optimization with evolu
tionary algorithms: a forward-looking approach," in GECCO '06: Proceedings 
of the 8th annual conference on Genetic and evolutionary computation. New 
York, NY, USA: ACM, 2006, pp. 1201-1208. 

[423] T. English, "Optimization is easy and learning is hard in the typical function," 
Proceedings of the 2000 Congress on Evolutionary Computation, 2000., vol. 2, 
pp. 924-931 vol.2, 2000. 

[424] Y Bengio and N. Chapados, "Extensions to metric based model selection," J. 
Mach. Learn. Res., vol. 3 , pp. 1209-1227, 2003 . 

[425] C. Cherkassky and F. M. Mulier, Learning from Data: Concepts, Theory, and 
Methods. Wiley-IEEE, 2007. 

[426] V. Cherkassky and Y Ma, "Comparison of model selection for regression," Neu
ral Comput., vol. 15, no. 7, pp. 1691-1714, 2003. 

[427] D. Gorissen, I. Couckuyt, E. Laermans, and T. Dhaene, "Multiobjective global 
surrogate modeling,dealing with the 5-pcrccnt problem," Engineering with 
Computers, vol. 26, no. 1, pp. 81—89, Jan. 2010. 



www.manaraa.com

B-44 CHAPTER B 

[428] J. Hjorth, Computer Intensive Statistical Methods: Validation, Model Selection, 
and Bootstrap. London: Chapman & Hall, 1994. 

[429] G. Smits. and E. Vladislavleva, "Ordinal Pareto genetic programming," in 
Congress on Evolutionary Computation IEEE, 16—21 July 2006, pp. 3114—3120-

[430] B.-T. Zhang and H. Muhlenbein, "Balancing accuracy and parsimony in genetic 
programming,"Evol. Comput., vol. 3, no. 1, pp. 17—38, 1995. 

[431 ] T. Soule and J. A. Foster, "Effects of code growth and parsimony pressure on 
populations in genetic programming," Evolutionary Computation, vol. 6, no. 4, 
pp. 293-309, 1998. 

[432] P. L. Bartlett, "For valid generalization the size of the weights is more important 
than the size of the network," in NIPS, 1996, pp. 134-140. 

[433] S. Lawrence and C. L. Giles, "Overfitting and neural networks: Conjugate gra
dient and backpropagation," in IJCNN (1), 2000, pp. 114-119. 

[434] R. Caruana, S. Lawrence, and C. L. Giles, "Overfitting in neural networks: 
Backpropagation, conjugate gradient, and early stopping," in Advances in Neu
ral Information Processing Systems, Denver, Colorado, 2001 . 

[435] P. L. Bartlett and S. Mendelson, "Rademacher and gaussian complexities: risk 
bounds and structural results," J". Mach. Learn. Res., vol. 3, pp. 463-482 , 2003. 

[436] P. L. Bartlett, O. Bousquet, and S. Mendelson, "Local Rademacher complexi
ties," The Annals of Statistics, vol. 33, no. 4, pp. 1497-1537, 2005. 

[437] Z. Chen and S. Haykin, "On different facets of regularization theory," Neural 
Computation, vol. 14, no. 12, pp. 2791-2846 ,2002 . 

[438] F. Girosi, M. Jones, and T. Poggio, "Regularization theory and neural networks 
architectures," Neural Computation, vol. 7, no. 2, pp. 219—269, 1995. 

[439] I. Koo and R. M. Kil, "Model selection for regression with continuous kernel 
functions using the modulus of continuity," Journal of Machine Learning Re~ 
sarch, vol. 9, pp. 2607-2633, 2008. 

[440] G. Lorentz, Approximation of Functions. Chelsea Publishing Company, NeW 
York, 1986. 

[441] O. Hjelle and M. Daehlen, Tri angulations and Applications (Mathematics and 
Visualization). Springer, 2006. 

[442] G. Bontempi and M. Birattari, "From linearization to lazy learning: A survey of 
divide-and-conquer techniques for nonlinear control," International Journal of 
Computational Cognition, vol. 3, no. 1, pp. 56—73, 2005. 



www.manaraa.com

BIBLIOGRAPHY B-45 

[443] QHull, "http://www.qhull.org/," 2008. 

[444] L. D. Tommasi, J. Rommes, T. Beelen, M. Sevat, J. A. Croon, and T Dhaene, 
"Forward and reverse modeling of low noise amplifiers based on circuit simula
tions," in Proceedings of the Workshop on Model Reduction for Circuit Simula
tion, Hamburg, Germany, 2009. 

[445] N. Murata, S. Yoshizawa, and S. Amari, "Network information criterion - deter
mining the number of hidden units for an artificial neural network model," IEEE 
Transactions on neural networks, vol. 5, no. 6, pp. 865—872, 1994. 

[446] D. Gorissen, T. Dhaene, and F. DeTurck, "Evolutionary model type selection for 
global surrogate modeling," Journal of Machine Learning Research, vol. 10, pp. 
2039-2078 , 2009. 

[447] J. Shekel, "Test functions for multimodal search techniques," in In Proceedings 
of the Fifth Annual Princeton Conference on Information Science and Systems, 
1971. 

[448] J. Arnold, R. Srinivasan, R. Muttiah, and J. Williams, "Large area hydrologic 
modeling and assessment - part 1: Model development," Journal of the Ameri
can Water Resources Association, vol. 34, pp. 73—89, 1998. 

[449] E. Bekele and J. Nicklow, "Multi-objective automatic calibration of SWAT using 
NSGA-II ," Journal of Hydrology, vol. 341 , pp. 165-176, Aug. 2007. 

[450] D. A. Savic, G. A. Walters, and J. W. Davidson, "A genetic programming ap
proach to rainfall-runoff modelling," Water Resources Management, vol. 13, 
no. 3, pp. 2 1 9 - 2 3 1 , 1999. 

[451] S. Khu and M. G. F. Werner, "Reduction of Monte Carlo simulation runs for 
uncertainty estimation in hydrological modelling," Hydrology and Earth System 
Sciences, vol. 7, no. 5, pp. 680-692 , 2003. 

[452] S. Khu, D. Savic, Y. Liu, and H. Madsen, "A fast evolutionary-based meta-
modelling approach for the calibration of a rainfall-runoff model," in Proceed
ings of the First Biennial Meeting of the International Environmental Modelling 
and Software Society, Lugano, 2004. 

[453] D. Broad, G. Dandy, H. Maier, and J. Nixon, "Improving metamodcl-based op
timization of water distribution systems with local search," in IEEE Congress 
on Evolutionary Computation, 2006, pp. 710—717. 

[454] M. Kamali, K. Ponnambalam, and E. Soulis, "Computationally efficient calibra
tion of WATCLASS hydrologic models using surrogate optimization," Hydrol
ogy and Earth System Sciences Discussions, vol. 4, pp . 2307—2321, 2007. 

http://www.qhull.org/


www.manaraa.com

B-46 C H A P T E R B 

[455] L. Garrote, M. Molina, and L. Mediero, PracticalHy'droinformatics. Springer 
Verlag, 2008, vol. 68, ch. Learning Bayesian Networks from Deterministic 
Rainfall-Runoff Models and Monte Carlo Simulation, pp. 375 -388 . 

[456] H. Rouhani, P. Willems, G. Wyseure, and J. Feyen, "Parameter estimation in 
semi-distributed hydrological catchment modelling using a multi-criteria objec
tive function," Hydrological Processes, vol. 2 1 , no. 22, pp. 2998-3008 , 2007. 

[457] J. G. Arnold and P. M. Allen, "Automated Methods for Estimating Baseflow and 
Ground Water Recharge From Streamflow Records," Journal of the American 
Water Resources Association, vol. 35 , pp. 411—424, Apr. 1999. 

[458] W. Wischmeier and D. Smith, Predicting Rainfall Erosion Losses. A Guide to 
Conservation Planning. Agriculture Handbook No. 537. U.S. Department of 
Agriculture, USDA, Washington., 1978. 

[459] H. Rouhani, D. Gorissen, P. Willems, and J. Feyen, "Improved rainfall-runoff 
modeling combining a semi-distributed model with artificial neural networks," 
in The 4th International SWAT Conference, Delft, The Netherlands, 2007. 

[460] N. Peters, "Laminar diffusion flamelet models in non-premixed turbulent com
bustion," Progress in Energy and Combustion Science, vol. 10, no. 3 , pp. 319— 
339, 1984. 

[461] R. Y. Rubinstein, Simulation and the Monte Carlo Method. New York, NY, 
USA: John Wiley & Sons, Inc., 1981. 

[462] Z. Wang, "Airfoil geometry design for minimum drag," Purdue University, Tech. 
Rep. AAE 550 ,2005 . 

[463] UIUC Airfoil Coordinates Database, "http://www.ae.uiuc.edu/m-
selig/ads/coord_database.html,"2008. 

[464] Design and analysis of subsonic isolated airfoils, 
"http ://web.mit.edu/drela/public/web/xfoil/," 2008. 

[465] D. E. Finkel and C. T. Kelley, "Additive scaling and the direct algorithm," J. of 
Global Optimization, vol. 36, no. 4, pp. 597 -608 , 2006. 

[466] F. Aires, C. Prigent, and W. B. Rossow, "Neural network uncertainty assessment 
using bayesian statistics: A remote sensing application," Neural Computation, 
vol. 16, no. 11, pp. 2415-2458 , 2004. 

[467] J. Carney, P. Cunningham, and U. Bhagwan, "Confidence and prediction inter
vals for neural network ensembles," Neural Networks, 1999. IJCNN '99. Inter
national Joint Conference on, vol. 2, pp. 1215—1218 vol.2, Jul 1999. 

http://www.ae.uiuc.edu/m


www.manaraa.com

BIBLIOGRAPHY B-47 

[468] A. Olivieri, N. Faber, J. Ferre, R. Boque, J. Kalivas, and H. Mark, "Uncertainty 
estimation and figures of merit for multivariate calibration," Pure & Applied 
Chemistry, vol. 78, pp. 6 3 3 - 6 6 1 , 2006. 

[469] B. W. Silverman, Density Estimation for Statistics and Data Analysis. Chap
man & Hall/CRC, Apr. 1986. 

[470] D. M. Pozar, Microwave Engineering, 2nd ed. John Wiley and Sons, 1998. 

[471] K. Crombecq, I. Couckuyt, D. Gorissen, and T. Dhaene, "Space-filling sequen
tial design strategics for adaptive surrogate modelling," in Soft Computing Tech
nology in Civil, Structural and Environmental Engineering (CSC 2009), 2009. 

[472] M. Meckesheimer, "A framework for mctamodel-based design: Subsystem 
metamodel assessment and implementation issues," Ph.D. dissertation, The 
Pennsylvania State University, 2001 . 

[473] G. Crevecoeur, A. Abdallh, I. Couckuyt, D. Gorissen, L. Depre, and T. Dhaene, 
"Two-level refined direct method for electromagnetic optimization and inverse 
problems," in Proc. of Compumag 2009, Florianopolis, Brasil (Poster session), 
2009. 

[474] I. Couckuyt, K. Crombecq, D. Gorissen, and T. Dhaene, "Automated response 
surface model generation with sequential design," in First International Con

ference on Soft Computing Technology in Civil, Structural and Environmental 
Engineering (CSC), Funchal, Portugal, 2009. 

[475] D. Stephens, D. Gorissen, and T. Dhaene, "Surrogate based sensitivity analysis 
of process equipment," in Proc. of 7th International Conference on CFD in the 
Minerals and Process Industries, CSIRO, Melbourne, Australia, Dec. 2009. 

[476] T. Zhu and P. D. Franzon, "Application of surrogate modeling to generate com
pact and pvt-sensitivc ibis models," in Proceedings of the 18th Conference on 
Electrical Performance of Electronic Packaging and Systems (EPEPS), Oct. 
2009. 

[477] Q. J. Zhang, K. Gupta, and V Devabhaktuni, "Artificial neural networks for 
RF and microwave design: from theory to practice," IEEE Transactions on Mi
crowave Theory and Techniques, vol. 51 , no. 4, pp. 1339—1350, Apr. 2003 . 

[478] J. E. Rayas-Sanchez, "Em-based optimization of microwave circuits using arti
ficial neural networks: The state-of-the-art," IEEE Transactions on Microwave 
Theory and Techniques, vol. 52, no. 1, pp. 420—435, Jan. 2004. 

[479] P. Burrascano, S. Fiori, and M. Mongiardo, "A review of artificial neural net
works applications in microwave computer-aided design," International Journal 



www.manaraa.com

B-48 CHAPTER B 

of RF and Microwave Computer Aided Engineering, vol. 9, no. 3, pp. 158—174, 
May 1999. 

[480] V Rizzoli, A. Neri, D. Masotti, and A. Lipparini, "A new family of neural 
network-based bidirectional and dispersive behavioural models for nonlinear 
rf/microwave subsystems," International Journal of RF and Microwave Com
puter Aided Engineering, vol. 12, no. 1, pp. 51—70, Jan 2002. 

[481] A. H. Zaabab, Q. J. Zhang, and M. Nakhla, "A neural network modeling ap
proach to circuit optimization and statistical design," IEEE Transactions on Mi
crowave Theory and Techniques, vol. 43 , no. 6, pp. 1349—1358, Jun. 1995. 

[482] J. Bandler, N. Georgieva, M. Ismail, J. Rayas-SAjnchcz, and J. . Q. J. Zhang vol. 
49, pp. 67-79, "A generalized space mapping tableau approach to device mod
eling," IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 1, 
pp. 67-79 , Jan. 2001 . 

[483] S. Koziel and J. W. Bandler, "Coarse and surrogate model assessment for engi
neering design optimization with space mapping," in Proc. IEEE/MTT-S Inter
national Microwave Symposium, Honolulu, HI, Jun. 2007, pp. 107—110. 

[484] , "Space mapping with multiple coarse models for optimization of mi
crowave components," IEEE Microwave and Wireless Components Letters, 
vol. 18, no. 1, pp. 1-3, Jan. 2008. 

[485] L. Zhang, Q. J. Zhang, and J. Wood, "Statistical neuro-space mapping tech
nique for large-signal modeling of nonlinear devices," IEEE Transactions on 
Microwave Theory and Techniques, vol. 56, no. 11, pp. 2453—2467, Nov. 2008. 

[486] M. Steer, J. Bandler, and C. Snowden, "Computer-aided design of RF and mi
crowave circuits and systems," IEEE Transactions on Microwave Theory and 
Techniques, vol. 50, no. 3 , pp. 996-1005 , Mar. 2002. 

[487] C. M. Snowden, Semiconductor Device Modeling. Peter Peregrinus Ltd., Lon
don, UK, 1988. 

[488] M. A. Khatibzadeh and R. J. Trew, "A large-signal analytical model for the GaAs 
MESFET," IEEE Transactions on Microwave Theory and Techniques, vol. 36, 
no. 2, pp. 231-238 , Feb. 1988. 

[489] K. Lehovec and R. Zuleeg, "Voltagecurrent characteristics of GaAs JFETs in 
the hot electron range," Solid State Electron, vol. 13, pp. 141 5—1426, 1970. 

[490] C. G. Morton, J. S. Atherton, C. M. Snowden, R. D. Pollard, and M. J. Howes, 
"A large-signal physical HEMT model," in Proc. IEEE MTT-S International 
Microwave Symposium Digest, San Francisco, CA, vol. 3, Jun. 1996, pp. 1759— 
1762. 



www.manaraa.com

BIBLIOGRAPHY B-49 

[491] W R. Curtice, "GaAs MESFET modeling and nonlinear CAD," IEEE Transac
tions on Microwave Theory and Techniques, vol. 36, no. 2, pp. 220—230, Feb. 
1988. 

[492] H. Statz, P. Newman, I. W. Smith, R. A. Pucel, and H. A. Haus, "GaAs FET de
vice and circuit simulation in SPICE," IEEE Transactions on Electron Devices, 
vol. 34, no. 2, pp. 160-169, Feb. 1987. 

[493] A. Materka and T. Kacprzak, "Computer calculation of large-signal GaAs FET 
amplifier characteristics," IEEE Transactions on Microwave Theory and Tech
niques, vol. 33, no. 2, pp. 129—135, Feb. 1985. 

[494] I. Angelov, H. Zirath, and N. Rosman, "A new empirical nonlinear model for 
HEMT and MESFET devices," IEEE Transactions on Microwave Theory and 
Techniques, vol. 40, no. 12, pp. 2258—2266, Dec. 1992. 

[495] V I. Cojocaru and T. J. Brazil, "A scalable general-purpose model for microwave 
FETs including DC/AC dispersion effects," IEEE Transactions on Microwave 
Theory and Techniques, vol. 45, no. 12, pp. 2248—2255, Dec. 1997. 

[496] C. Snowden, "Nonlinear modelling of power FETs and HBTs," Interna
tional Journal of Microwave and Millimeter-wave Computer-Aided Engineer
ing, vol. 6, no. 4, pp. 219-233 , Dec. 1996. 

[497] D. E. Root, S. Fan, and J. Meyer, "Technology independent large-signal non 
quasistatic FET models by direct construction from automatically characterized 
device data," in Proc. IEEE 21st European Microwave Conference, Stuttgart, 
Germany, Oct. 1991, pp. 927-932. 

[498] L. Zhang, J. Xu, M. Yagoub, R. Ding, and Q. Zhang, "Neuro-space mapping 
technique for nonlinear device modeling and large-signal simulation," in Proc. 
IEEE MTT-S International Microwave Symposium Digest, Philadelphia, PA, 
Jun. 2003, pp. 173-176. 

[499] L. Zhang, R. Ding, and Q. J. Zhang., "Generalized knowledge-based neural 
network for microwave modeling," in 9th International Symposium On Antenna 
Technology and Applied Electromagnetics, Montreal, QC, Aug. 2002, pp. 558— 
561. 

[500] S. Koziel and J. Bandler, "Support-vector-regression-bascd output space-
mapping for microwave device modeling," in IEEE MTT-S International Mi
crowave Symposium Digest, Atlanta, GA, Jun. 2008, pp. 615—61 8. 

[501] G. W. Greenwood and A. Tyrrell, Introduction to Evolvable Hardware: A Prac
tical Guide for Designing Self-Adaptive Systems. Wiley, 2006. 



www.manaraa.com

B-50 CHAPTER B 

[502] T. Nishino and T. Itoh, "Evolutionary generation of microwave line-segment 
circuits by genetic algorithms," IEEE Transactions on Microwave Theory and 
Techniques, vol. 50, no. 9, pp. 2048-2055 , Sep. 2002. 

[503] J. R. Koza, I. Bennett, F. H., D. Andre, M. A. Keane, and F. Dunlap, "Automated 
synthesis of analog electrical circuits by means of genetic programming," IEEE 
Transactions on Evolutionary Computing, vol. l , n o . 2, pp. 109—128, Feb. 1997. 

[504] X. Yao, "Following the path of evolvable hardware," Communications of the 
ACM, vol. 42, no. 4, pp. 46 -49 , Apr. 1999. 

[505] X. Yao and T. Higuchi, "Promises and challenges of evolvable hardware," IEEE 
Transactions on Systems, Man, and Cybernetics, Part C: Applications and Re
views, vol. 29, no. 1, pp. 87-97 , Jan. 1999. 

[506] J. A. Nelder and R. Mead, "A simplex method for function minimization," Com
puter Journal, vol. 7, no. 4, pp. 308—313, Jan. 1965. 

[507] H. Ninomiya, S. Wan, H. Kabir, X. Zhang, and Q. Zhang, "Robust training 
of microwave neural network models using combined global/local optimization 
techniques," in Proc. IEEE MTT-S International Microwave Symposium Digest, 
Atlanta, GA, Jun. 2008, pp. 995-998 . 

[508] D. Schreurs, M. Verspecht, S. Vandenberghe, and E. Vandamme, "Straightfor
ward and accurate nonlinear device model parameter-estimation method based 
on vectorial large-signal measurements," IEEE Transactions on Microwave The
ory and Techniques, vol. 50, no. 10, pp. 2315—2319, Oct. 2002. 

[509] D. Paul, M. Nakhla, R. Achar, and A. Wcisshaar, "Broadband modeling of high-
frequency microwave devices," IEEE Transactions on Microwave Theory and 
Techniques, vol. 57, no. 2, pp. 361—373, Feb. 2009. 

[510] E. R. Harold and W. S. Means, XML in a Nutshell. O'Reilly Media, Inc., 
Cambridge, Massachusetts, 2004. 

[511] P. Walmsley, XQuery. O'Reilly Media, Inc., Cambridge, Massachusetts, 2007. 

[512] Advanced Design System (ADS) 2006, Agilent Technologies, Palo Alto, CA. 

[513] The MathWorks Inc., Natick, MA, USA. 

[514] MINIMOS-NT, Institute for Microelectronics, Technical University, Vienna, 
Austria. Release 2.0. 


